

Super Fibonacci Graceful Labeling of Friendship and Windmill Graph

Umamaheswari.K¹, Nandhini.V²,Sujitha.C³, Devisindhu.S⁴

^{1,2}Assistant Professor, Sri Krishna Arts and Science College, Coimbatore ^{3,4}PG Student Sri Krishna Arts and Science College

Abstract

The Fibonacci series is utilized to produce Fibonacci in a recursive grouping. To find, the arrangement which is produced by including the past two terms is known as a Fibonacci arrangement. The first two term of the Fibonacci arrangement is set as 0 and 1 and it proceeds till boundlessness. And this paper we discuss about the Fibonacci number and its function h $:V(G) \rightarrow \{0,F1,F2,...,Fq\}$ is said as super Fibonacci graceful, then the induced edge labeling f*: $E(G) \rightarrow \{F1,F2,F3,...,Fq\}$ and it is characterized by $h^*(ab) = |h(a)h(b)|$ is bijective. And also the Cycle in Friendship graph and Dutch windmill graph, butterfly graph and $(K_4 - e)^n$ graphs are interrogated. And also few examples are given to show the result of the theory.

Article History Article Received: 18 May 2019 Revised: 14 July 2019 Accepted: 22 December 2019 Publication: 22 January 2020

Article Info

Volume 82

Publication Issue:

Page Number: 4503 - 4506

January-February 2020

Key Words : Friendship Graph, The Graph $(K_4 - e)^n$, Fibonacci Graceful and Super Fibonacci Graceful Labeling.

I. INTRODUCTION

In diagram hypothesis, a smooth naming of a chart with m-edges is the marking of its vertices with some subset of the numbers among 0 and m comprehensive, to such an extent that no two vertices share a lable, and each ana every edge is particularly recognized by the outright distinction between its endpoints, to such an extent that this greatness lies among 1 and m comprehensive. A diagram which concedes a graceful marking is known as an graceful graph.

The chart G(p, n) will be called Fibonacci graceful if there is a naming 1 of its vertices with distinct number from the set $\{0,1,2,3,...,F_n\}$ so the induced edge marking l', characterized by l'(ab) = | l(a)- l(b) | is a bijection onto the set $\{F_1,F_2, ...,F_n\}$.

We call a function f, the Fibonacci graceful labeling of a chart G with q edges, if f is an injection function from the vertices of G to the set { 0,1,2,..., F_q }, where F_q is the q^{th} Fibonacci number of the Fibonacci arrangement $F_1 = 1, F_2, = 2, F_3 = 3, F_4 = 5,...$, to such an extent that each and every edge uv is assinged the lable |h(a)-h(b)|, the subsequent edge labeling are $F_1, F_2, ..., F_q$. An injective function h : $V(G) \rightarrow \{F_0, F_1, ..., F_q\}$, where F_q , q^{th} Fibonacci number, which is said to be a Super Fibonacci Graceful Labeling if the induced edge labeling |h(a)-h(b)| is a bijection onto the set $\{F_1, F_2, ..., F_q\}$.

II. DEFINITIONS

Definition 2.1.

If the vertices or the edges or both allotted values subject to certain condition(s), at that point it is known as graph labeling.

Definition 2.2.

The function f is called a graceful labeling of the graph G, if h: $V \rightarrow \{0,1,2,...,q\}$ is injective and the induced function h*: $E \rightarrow \{1,2,3,...,q\}$ defined as h*(e = ab) = |h(a) - h(b)| is bijective.

Definition 2.3.

The function $h: V(G) \rightarrow \{0,1,2,\ldots,F_q\}$ (where F_q is the q^{th} Fibonacci number) is said to be Fibonacci graceful, if the induced edge labeling $h \ast : E(G) \rightarrow \{F_1, F_2, \ldots, F_q\}$ characterized by $h^*(ab) = |h(a) - h(b)|$ is bijective.

Definition 2.4.

The function $h: V(G) \rightarrow \{0, F_1, F_2, \dots, F_q\}$ is said as Super Fibonacci graceful, if the induced edge labeling $h^*: E(G) \rightarrow \{F_1, F_2, \dots, F_q\}$ characterized by $h^*(ab) = |h(a) - h(b)|$ is bijective.

Definition 2.5.

A Friendship graph F_n is a diagram which comprise of n triangles with the common vertex.

Definition 2.6.

Two cycles of the same order n offering a common vertex with an discretionary number m of pendant edges appended at the common vertex called butterfly graph $B_{n,m}$ where n and m are two positive integers.

Definition 2.7.

The wind mill graphs $(K_m)^n$ to be the family of graphs consisting of n copies of K_m with a common vertex.

Definition 2.8.

The graph $(K_4 - e)^n$ is obtained from the windmill graph $(K_4)^n$, by removing an edge in each K_4 .

Definition 2.9.

A graph is acquired by appending a triangle at every pendant vertex of a Star graphs.

III. THEOREMS

Theorem 3.1

Super Fibonacci gracefulness in Friendship graph

Proof:

Consider F_n be the friendship graph. The order of F_n is p=2n+1 and the size of F_n is q=3n. By the vertex of F_n , the meaning set V= $\{a_1, a_2, \dots, a_n, b_0, b_1, b_{2,\dots}, b_n\}$. Let a_1, a_2, \dots, a_n be second vertices of the triangles and let b_1, b_2, \dots, b_n be third vertices of the triangles, and let the apex vertex b_0 be first vertex of all the triangles. The edge $\{e_i, e_{ii}, e_i \}$, where $e_i = (b_0, b_i), e_{ii} =$ set E= (b_i, a_i) and $e_i^* = (b_0, a_i)$.

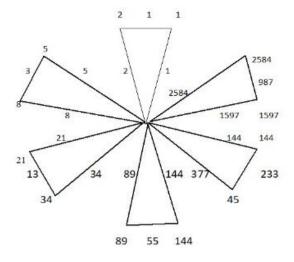
Presently, let us characterize the function $h : V \rightarrow \{0, F_1, F_2, \dots, F_q\}$ follows

h(
$$b_0$$
)=0
h(a_j)= F_{3j-1} for j=1,2,3,...,n
h(b_j)= F_{3j} for j=1,2,3,...,n

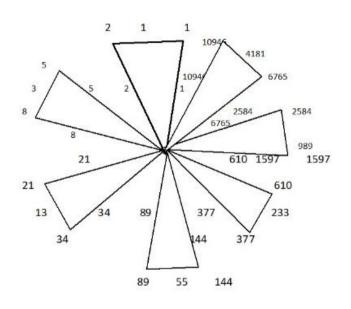
Then the defined function admits the Super Fibonacci graceful labeling. Hence Super Fibonacci gracefulness in friendship graph.

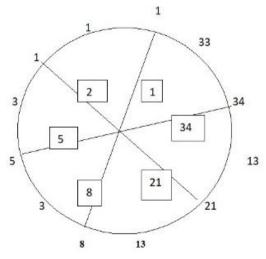
Example:

The friendship graph of F_5 , the order is p=13 and the size is q=18



The friendship graph of F_7 the order is p=15 and the size is q=21





The graph $(K_4 - e)^n$ are super fibonacci graceful.

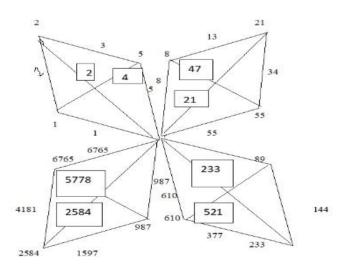
Proof:

Let G= $(K_4 - e)^n$ be the graph. The order of the graph G is p=3n+1 and the size of the graph G is the q=5n.Then vertex set $V = \{x, a_1, a_2, ..., a_n, b_1, b_{2,...,} b_n, c_1, c_{2,...,} c_n\}$.Let a_1, a_2, \dots, a_n be second vertices of the $(K_4 - e)^n$, let b_1 , b_2, b_n be third vertices of the $(K_4$ *e*)*n*,let*c*1,*c*2,...,*cn* fourth vertices be of the $(K_4 - e)^n$. And let the central vertex x be first the $(K_4 - e)^n$. The vertex of all edge set $E = \{e_i, g_i, e_{ii}, e_{ii}^*\}$ where $e_i = (x, a_i), e_{ii} = (a_i, b_i), g_i = (x, b_i), h_i = (x, c_i),$ $e_{ii}^{*}=(b_i, c_i)$. Presently, let us characterize the function $h: V \rightarrow \{0, F_1, F_2, \dots, F_q\}$ as follows h(x)=0 $h(a_{i+1}) = F_{5i+1}$ for $j = 0, 1, 2, 3, \dots, n-1$ $h(b_i) = F_{5i-2}$ for $j = 1, 2, 3, \dots, n$ $h(b_i) = F_{5i}$ for $j = 1, 2, 3, \dots, n$

At that point, the above defined characterized work h concedes Super Fibonacci Graceful labeling.

Example:

The graph $(K_4 - e)^4$ is appeared below .The order and the size of the graph $(K_4 - e)^4$ is p=13 and q=20 individually.



Theorem 3.3

The Butterfly graphs are Super Fibonacci graceful graphs.

Proof :

Let $B_{3,m}$ be the Butterfly graph. The order of the Butterfly graph be p=5+m and the size of the Butterfly graph be q=6+m. By the definition of the Butterfly graph, the vertex set $V(G) = \{a_1, a_2, a_3, a_4, a_5, b_1, b_{2,...,} b_m\}$. Let a_1, a_2, a_3, a_4, a_5 be the vertices of the two cycles C_3 and a_1 be the apex vertex of the two cycles C_3 . The edge set $E = \{e_i, e_{ij},\}$ where $e^* = (a_1, b_i)$ and $e_{ij} = (a_i, a_j)$.

Presently, let us characterize the function

h : V \rightarrow {0, F_1 , F_1 , F_2 , ..., F_q } as follows

$$h(a_1)=0$$

 $h(a_i) = F_i$ for j=1,2,3,...,n

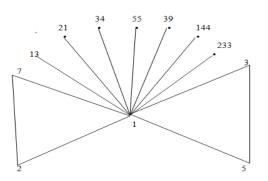
$$h(a_j) = F_{j+1}$$
 for $j = 4,5$

 $h(b_i) = F_{i+6}$ for j=1,2,...,m

At that point, the above defined characterized work h concedes Super Fibonacci Graceful labeling. Hence the Butterfly graphs are Super Fibonacci Graceful.

Example:

The Butterfly graph $B_{3,m}$ is appeared in figure. The order and size of the graph is p=13 and q=14 individually.



CONCLUSION

In this paper we observed that the super Fibonacci gracefulness, if the induced edge labeling h*: E (G) \rightarrow { F_1 , F_2 ,..., F_q } and it is characterized by h*(ab) =|h(a)- h(b)| is bijective, when the function is h: V(G) \rightarrow {0, F_1 , F_2 ,..., F_q }. An investigation is made on Friendship diagram, Wind mill diagram and the Butterfly diagram by using Super Fibonacci graceful labeling.

REFERENCES

- Dushyant Tanna, "Harmonious labeling of certain graphs". International journal of advanced Engineering and Research and Studies .E-ISSN2249-8974
- [2] S. Meena and P. Kavitha, "Prime labeling of some butterfly graphs", International Journal of Mathematical Archive-5(10), 2014, 15-25.
- [3] S. Sandhiya and S. Somasundharam, "Harmonic mean labeling of some new graphs, "International Journal of Mathematical Archive-5(10), 2014, 15-25.
- [4] R. Uma and D. Amuthavalli "Fibonacci graceful labeling of some star related graphs" International Journal of Computer
- [5] Dr. M . Subbiah "Strong edge graceful labeling of Wind mill graphs "Int. J. Cont. Math. Science,Vol.7,(2012).

Published by: The Mattingley Publishing Co., Inc.