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Abstract: 

Nanotechnology has turned out to be a standout amongst the most 

encouraging advances connected in all zones of science. Anisotropic 

nanoparticles are a class of particles that are asymmetric in shape and 

have at least one dimension at nanoscale. These type of nanoparticles 

exhibit direction and dimension dependent chemical and physical 

properties. These may be composed of one or more components. 

Anisotropy brings features that cannot be obtained simply by tuning 

the size of isotropic nanoparticles. Such type of great changes in the 

properties of anisotropic nanoparticles makes them a good candidate 

for introducing a vast area of applications. This review presents a 

glimpse into this interesting area. We discuss the background, size, 

shape, synthesis methods, compositions, characterization techniques 

and applications of anisotropic nanoparticles.  

Keywords: Anisotropic NPs, Plasmon Resonance, Bio-sensing, Bio-

imaging, Photothermal therapy, Drug Delivery. 

 

 

Introduction: 

Particles that have at least on dimension less 

than 100nm are referred to as nanoparticles. 

Comparison of these particles with bulk 

materials yields novel properties due to larger 

surface area (1). Ever since the evolution of 

nanoparticles shape has played a major role in 

deciding the properties and various aspects of 

nanoparticles (2, 3). The simplest change that 

can be seen directly due to change in size and 

shape of nanoparticles is their colour, which 

arises due to confinement of electrons (4). In 

case of symmetric or isotropic nanoparticles, 

the motion of electron is same in all the 

dimensions and hence the properties remain 

almost same by tuning their size. On the 

contrary, asymmetric and anisotropic 

nanoparticles exhibit different properties along 

different directions due to the different type of 

motion of electrons in many directions. 

Different sort of anisotropic nanoparticles and 

their applications are reported in literature 

such as noble metal ANPs (5), semiconductor 

ANPs (6), Ceramic ANPs (7), Polymer ANPs 

(8), Metal Oxide ANPs (9), Carbon Based 

ANPs (10), and magnetic ANPs (11) and so 

on. According to Mie theory, the plasmonic 

peak position of a metallic nanoparticle 

depends on its size and shape. In symmetric 

nanoparticles such as spheres, this peak can be 

tuned in a small region of wavelength by 

varying the size of nanoparticle. Whereas in 

ANPs, the plasmonic peak can be tuned in a 

large region of wavelength. Also, multiple 

peaks can be achieved by introducing 

anisotropy in nanoparticles. These multiple 

peaks observed in absorption spectra are often 

extended in NIR region which is the most 

compatible region for studies related to tissues, 

hence they become a good candidate for 

diagnostic applications (12, 13). In case of 
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magnetic nanoparticles the coercive field of 

anisotropic nanoparticles is more as compared 

to symmetric nanoparticles (14).The 

applications of ceramic nanoparticles are also 

enhanced by introducing anisotropy in it, 

authors have reported increased applications of 

potassium hexatitanate whiskers (15), a high 

surface area of potassium titanate increases the 

ion exchange capacity (16).  

In this review we will focus on anisotropic 

nanoparticles prepared by different synthesis 

methods. We will also discuss the applications 

specifically arising due to the anisotropy 

introduced and different methods to control 

their shape and size. Several techniques used 

for characterization of these particles will also 

be discussed.  

Methods of Preparation: 

Two general techniques to fabricate the NPs 

are top down and bottom up. In top down 

methods, the size is reduced by mechanical 

methods (17). While, the metal ions are 

reduced chemically to Metal NPs in bottom up 

method, it provides a better control on particle 

growth and size. A number of synthesis 

methods including Seed mediated synthesis, 

template assisted synthesis, surfactant directed 

synthesis, polyol assisted synthesis, biological 

synthesis, photochemical synthesis, 

electrochemical synthesis and hydrothermal 

synthesis etc have been developed for the 

synthesis of ANPs. Each method has its own 

merits and demerits. In the following section 

we will discuss these strategies of ANPs 

synthesis. 

Seed Mediated Synthesis:  

Seed mediated synthesis process is a two step 

process for producing nanoparticles. At first a 

seed is prepared by reducing a metal salt with 

the help of a strong reducing agent. Then these 

seed particles are allowed to grow in the 

desired shape in presence of a mild reducing 

agent to produce anisotropic nanoparticles. As 

in this method seed particles are enlarged by 

addition of metal atoms in many steps hence it 

becomes easy to control the shape of final 

nanoparticles. It gives the advantage of getting 

ANPs that have size, shape, surface and other 

properties dependent on the choice of seed, 

reducing agent and the concentration of 

surfactant. The second step involves the 

reduction of metal ions in presence of a mild 

reducing agent which is carried in presence of 

seed metal particles thus the newly formed 

nanoparticles try to assemble on the surface of 

the already present seed particles (18). The 

same strategy can be seen in Zsigmondy’s 

nuclear method, which is also a two step 

process for producing the nanoparticles of 

desired morphology (19).Varying the amount 

of seed nanoparticles is during the synthesis 

results in the size variation of end product. The 

size of GNRs decreases as the amount of seed 

particles increases in the reaction. Many 

external molecules and ions may be used to 

change the growth of nanoparticles so that it 

may result in different morphologies. As one 

can obtain triangular nanoprisms of Gold by 

using a little amount of iodide ions while 

synthesizing the GNRs (20). The concentration 

of the surfactant or capping agent can also 

alter the shape of the resulting nanoparticle, as 

the size of the micelles varies with 

concentration of surfactant. Millstone et al. 

(21) has reported the formation of nanoprisms 

by reducing the gold salt using ascorbic acid in 

the presence of NaOH and concentrated CTAB 

solution by a three step process. The size of 

these nanoprisms can be varied by using 

nanoprisms as seeds in the gold solution and 

further reducing it by a mild reducing agent 

(22).Chen et al. (23) has reported the 

formation of Silver nanoplates with size 

variation of 40-300 nm by simple reduction 

method at room temperature in the presence of 

CTAB and Ag@citrate seed particles of about 

15 nm, clearly indicating the dependence of 

size on the dilution extent of surfactant. Fan et 

al. (24) has synthesized Au@Pdnanocubes 

(core-shell structure, having Au as core and Pd 

as shell) using seed mediated synthesis in two 

steps. In this a 30 nm Au octahedral was first 

grown using a 3 nm Au nanosphere, and then a 

nanocube was grown on it by reducing 

H2PdCl4 with the help of ascorbic acid in the 

presence of CTAB. Many other authors have 
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also synthesized these types of core-shell 

bimetallic nanoparticles using the seed 

mediated synthesis (25, 26).  

Polyol Synthesis: 

The polyol synthesis for small particles started 

in 1989 and was first used by Fievet, Lagier 

and Figlarz (27). Polyols are basically alcohols 

having multiple hydroxyl groups. They have 

water comparable polarity and solubility, 

which enables one to use simple metal salts as 

starting materials during the synthesis of metal 

nanoparticles. They can dissolve many 

precursor salts easily. They have another 

advantage of becoming reductive at elevated 

temperatures, thus making them appropriate 

for one pot synthesis of metal nanoparticles. 

Many authors have reported the synthesis of 

ANPs using polyol method. Atmane et al. (28) 

has synthesized monocrystalline Co NRs of 

varying size by using a Co(II) dicarboxylate as 

precursor in the presence of BD. He has also 

presented an approach to control the size by 

using legands as a key ingredient in the 

synthesis. Ni NRs of diameter 11 nm and 

length 75 nm were synthesized using Castor 

oil (a natural polyol) and it was found that the 

morphology of the resultant ANPs depends on 

the precursor concentration, as its three molar 

concentrations resulted in NRs while six molar 

produced nanospheres (29).Biacchi et al. (30) 

has reported the synthesis of branched, 

triangular, nanoplates and octahedron 

Rhodium NPs in the presence of EG, DEG, 

TrEG and TEG polyols and has also shown 

that how proper selection of polyol solvent can 

manipulate the morphology of resulting 

NPs.Rhodium tripods of size 11 nm have also 

been synthesized in the presence of EG (31). 

Zhang et al. has reported the formation of 

Rhodium nanocubes of edge length 6.5 nm by 

a seedless polyol method using EG (32).Many 

other authors have synthesized Bipyramids of 

Pd (33),wires of Pd, PdPtBi and Ag 

(34,35,36),  icosahedra of Pd (37), cubes of 

PdNi and Ag (38, 39), dendrites of PdRh (40), 

branches of Pt (41), flowers of Pt (42), rods of 

AuAg (43) and plates of BiRh (44) in the 

presence of polyols like EG, BD, DEG, PDO 

and PD etc. 

Biological Synthesis: 

Natural frameworks are fit for making 

utilitarian superstructures of inorganic 

nanomaterials, for example, indistinct silica, 

magnetite (magnetotactic microscopic 

organisms) and furthermore, calcite (45). In 

this method, shape controlled sysnthesis of 

nanomaterials has been accomplished either by 

development in compelled situations, for 

example, layer vesicles or through effective 

molecules, for example, polypeptides that bind 

particularly to crystallographic planes of 

inorganic surfaces. Microorganisms have been 

appeared to be vital nanofactories that hold 

monstrous potential as ecofriendly and 

practical devices, staying away from lethal, 

harsh synthetic compounds and the high 

vitality request required for physiochemical 

synthesis. Microorganisms can aggregate and 

detoxify overwhelming metals because of 

different reductive chemicals, which can 

decrease metal salts to metal nanoparticles 

with a tight size dissemination and, thus, less 

polydispersity. In the course of recent years, 

microorganisms, including microscopic 

organisms, (for example, actinomycetes), 

parasites, and yeasts, have been considered 

widely for the synthesis of 

nanoparticles.Anisotropic Silver Nanoparticles 

can be synthesized using Bhargavaeaindica 

(46) and Silver Nitrate. During the reaction a 

change in the color of the culture medium 

indicated the formation of Silver 

Nanoparticles. The same microorganism has 

also been used to produce Gold Nanoflowers 

(47). Bacillus amyloliquefaciens is another 

microorganism which has been reported for 

the synthesis of Cadmium Sulfide 

Nanoparticles (48). Bacillus pumilus, Bacillus 

persicus, and Bacillus licheniformis have been 

used to synthesize Triangular, Hexagonal and 

Spherical Silver Nanoparticles (49).  

Now days, phytonanotechnology has given 

new roads to the combination of nanoparticles 

and is an ecofriendly, basic, fast, stable, and 

financially savvy technique. 
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Phytonanotechnology has points of interest, 

including biocompatibility, adaptability, and 

the therapeutic appropriateness of integrating 

nanoparticles utilizing the all inclusive 

dissolvable, water, as a diminishing medium 

(50). Panax Ginseng, which is a herbal plant 

have been used to synthesize silver and gold 

nanoparticles (51, 52, 53). Synthesis of ANPs 

using plants basically involves boiling the 

small pieces of plant’s part like leaves, roots, 

fruits and stems with water to obtain the 

extract. Then this extract is filtered and 

centrifuged for the reduction of metal salts. 

Leaves of Cymbopogan citrates have been 

used by KadarkaraiMurugan to synthesize 

spherical, triangular, hexagonal and rod 

shaped Gold NPs by controlling the ratios of 

plants extract and metal salt solution (54).  

Adsorbate Directed Synthesis: 

In ADS, molecules are used as an adsorbate 

for controlling shape of the synthesized 

nanoparticles by selectively adsorbing to a 

particular plane of the crystal, which lowers 

the surface energy of that plane and makes that 

plane stabilised. Oriented Aggregation and 

Directed Growth are two techniques of ADS. 

Any addition of metal atoms directs the 

growth of crystal at particular planes which 

have weak binding of molecules in case of 

directed growth synthesis. However, on the 

other planes which have strong binding of 

adsorbate molecules, metal atoms do not grow 

in size. In an oriented aggregation mechanism, 

some seed particles support aggregation at 

certain planes by strongly binding themselves 

with adsorbate molecules. This method has 

been used to synthesize rectangular bars, 

octagonal rods, nanobeams(55) and 

nanowires(56). It is seen that when particles 

capped with citrate are used as seeds in a 

solution of CTAB in presence of Ag
+
 ions, 

then bipyramidal gold nanocrystals are 

formed. However, the same synthesis resulted 

in the formation of Gold nanorods when seed 

particles used were CTAB capped and 

pseudospherical in shape (56, 57). Also, 

CTAB capped seeds are used to synthesize 

cylindrical nanorods rather than non 

cylindricalnanorods (57, 58). Iodide ions 

possess the ability to suppress the crystal 

growth along the direction Au[111], hence an 

addition of these ions to growth solution 

results in triangular nanoprisms (59).If the 

growth solution contained a mixture of CTAB 

and BDAC ( BenzylDimethylhexadecyl 

Ammonium Chloride), the aspect ratio of 

nanorods produced then was increased by a 

significant amount (58). 

MonodisperseAu@Ag and Au@Pd core shell 

nanocubes were obtained by the addition of 

octahedral gold nanocrystals as seed particles 

(60). However, if these octahedral Gold 

nanocrystals were replaced by Gold nanorods 

then also core shell nanoparticles having same 

morphology were obtained, which were 

transformed into hollow nanostructures by 

Galvanic Replacement Reactions (61). Gold 

nanostars can also be obtained just by adding 

NaOH to growth solution rapidly. These 

nanostars have multiple Plasmonic peaks due 

to their irregular structure and spikes on 

surface (62).  

Photochemical Synthesis: 

Anisotropic Nanoparticles may also be 

synthesized by reduction of salts through 

radiation process and photochemical reactions. 

In photochemical reactions the solvent is not 

needed. Also in this process the resulted 

nanostructures are free from any impurities 

and produce nanoparticles in high yield as 

compared to other methods. Colloidal Gold 

ANPs are formed when Chloroaurate solution 

with CTAB templates is irradiated by UV light 

(63). Synthesis of Anisotropic Gold 

Nanoparticles has been reported by Esumi et 

al, by irradiating chloroaurate solution with 

UV light while CTAB templates were present 

in the mixture (63). As the reducing agents are 

not present in this method, the growth 

becomes slow which is advantageous to 

synthesize uniform structures (64). Using 1-D 

templates such as DNA in place of 

conventional templates results in 1-D 

nanowires of diameters ranging from 40 nm to 

80 nm (65). This method does not disturb the 

DNA structure and therefore it may be utilized 
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to produce composite ANPs. Crown shaped 

nanoparticles of Platinum have been reported 

by irradiating the Platinum solution having 

G4-NH2 PAMAM with UV light. Dendrimers 

used in this synthesis acts like a template to 

control the size of the synthesized particles 

(66). A change in shape and size has also been 

observed by illuminating the already 

synthesized nanoparticles with radiation, such 

a transformation has been reported in which 

Silver nanoparticles were transformed into 

nanotriangles (67). Nanoplates and nanostars 

like structures have also been synthesized by 

photo chemically reducing the Titanium 

Dioxide assisted Gold salt (68). Many 

bimetallic nanoparticles have also been 

synthesized using this method which included 

core-shell nanoparticles, alloy nanoparticles 

and nanorods of Au and Ag (69). 

Surfactant Directed Synthesis: 

Surfactants play a vital role in controlling the 

shape of nanoparticles. Among all other 

surfactants used for synthesis of Gold 

Nanorods, CTAB affects the morphology of 

synthesized rods to a high extent due to its 

hydrophobic nature. A bilayer is formed due to 

the self assembly of single chained CTAB in 

aqueous media (70). During the synthesis of 

nanorods, aspect ratio depends on the length of 

the chain also (71). Longer nanorods with a 

slow growth rate are synthesized when a long 

chained surfactant is present in the synthesis 

(70). A wide variety of shapes such as 

rectangles, cubes, stars, triangles, hexagons, 

dendrimers and rods may be obtained using a 

surfactant at room temperature (72). 

Cetylpyridinium Chloride is another surfactant 

which has been used to synthesize highly 

monodisperse polyhedral gold particles like 

cubic, octahedral and dodecahedral (73). 

Convex shaped polyhedrals having low 

catalytic activity have been reported by using 

CTAB and if CTAC is used in place of CTAB, 

concave nanocubes were formed (74,75). If 

Halide ion is added convex shape is changed 

to concave nanocubes (76). Similarly, in case 

of pseudospherical particles, addition of 

Halide ion results in nanorods or nanoprisms 

(77). While synthesizing Gold nanoparticles 

using Zwitterionic surfactant a dendritic 

nanostructure results which has most of the 

absorbance in NIR region (78).Nanoflowers 

may be formed by changing the pH of the 

synthesis or by adding lipids (79). CTAB and 

BDAC used in combination increase the aspect 

ratio of synthesized nanorods (80). A notable 

difference is seen in size, shape and 

morphology of resulted nanorods while the 

temperature of synthesis is changed (81). 

Purification Methods: 

The need of size and shape controlled 

anisotropic nanoparticles by wet chemical 

synthesis is extending the investigation for 

refining techniques to separate nanoparticles 

of different size and shapes. These strategies 

allow one to get highly monodisperse 

nanostructures. These 

monodispersenanoparticles are important 

when they need to assemble for producing 

longer nanostructures which are further used in 

many applications. The methods which are 

used to separate different size nanoparticles 

involve chromatography, electrophoresis, 

membrane filtration, selective precipitation, 

extraction and centrifugation (82). 

Applications of ANPs: 

Increased surface area and plasmonic 

properties make ANPs potential candidate for 

applications like targeted drug delivery, 

imaging, theranostics and sensing. 

Biosensing: 

 The detection of biological agents, harmful 

and toxic substances is important for diagnosis 

and ecological observations (83). Generally, 

biosensing methods are based on 

measurements of color changes, Plasmonic 

shifts, scattering, absorption of UV-visible 

light and the properties of material like 

conductivity and dielectric constant (84). For 

these techniques the information of 

constituting elements is obtained by sensing 

based on ANPs which changes the color of 

solution in which it is mixed or shifts the 

Plasmonic band and at times enhances the 
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Raman Scattering. The scattering properties 

and coefficient of absorption in UV-visible 

range changes when biomolecules are present 

and the localised surface plasmon resonance 

band shifts. It brings a high sensitivity in 

optical detection and enables a better 

calorimetric biosensing (85). For example, 

longitudinal plasmon bands of AuNRs are 

highly sensitive for change in dielectric 

properties, when they are used for sensing 

(86). Nanorods having an aspect ratio of 3 

suffered a red shift of 40nm caused by the 

change refractive index of the solution in the 

presence of the biomolecules (87). The 

sensitivity of detection depends on the aspect 

ratio of NRs (88-90). A detection limit of 

0.1ng/mL for nutravidine is achieved easily by 

functionalising the NPs with biotin (91). A 

sensitivity limit of 1nm while detecting 

thrombin has been reported by using nuclic 

acid functionalised poly dispersed Pt NPs (92). 

Same size of nano disks and nano rings have 

been used by Sutherland et al to compare the 

dependence of Refractive Index on shape (93). 

In his study he has reported that sufficiently 

high sensitivity is exhibited by nano rings as 

compared to nano disks. AuNRs functionalised 

with alkanethiol upon coated by antibody 

shows multiplex sensing by easily detecting 

three different targets (86). DNA identification 

of multiple targets has been reported by Kim et 

al using AuNPs patterned on wire systems 

(94). Silica coated AuNRs when coated on 

quartz substrate modified with PVP, can be 

used as a platform for calorimetric sensing. 

The change in color produced by it can be 

observed by naked eye and the quantitative 

information of IgG that is present in the 

sample is also obtained (95). Au nano shells 

developed by Talley and co-workers showed 

sharp SERS property than Au nanospheres 

(96). A cholesterol biosensor has been 

fabricated by Wang et al using hybrid 

nanorods of zinc oxide functionalised with 

Gold or Platinum and MWCNTs (97). 

Locharoenrat and co-workers developed 

bimetallic NRs of Gold and Palladium and 

explained that longitudinal peak exhibited at 

800-900nm shifted as a function of shell 

thickness and medium’s dielectric property 

(98). Pd functionalised NRs show increased 

sensing limit for CO as compared to 

immaculate Zincoxide NRs. This improved 

sensing is ascribed to chemical and electronic 

sensitivity of PdNPs (99). 

Bio imaging: 

Now a day’s biological imaging has gotten 

more noteworthy and enthusiasm for clinical 

practice and research. Various imaging 

techniques have been created to either 

comprehend the natural procedures in tissues, 

living cells and organs or identifying and 

evaluating the diseases for structuring a better 

treatment approach. Many methods from 

Positron Emission Tomography, Ultrasounds 

and Magnetic Resonance Imaging to the 

optical methods like Single Photon Emission 

CT, Computed Tomography and NIR Optical 

Imaging have been reported for different 

purpose. Out of all these techniques, Optical 

Imaging provides wealthy contrast mechanism 

while utilizing properties of light. Although 

the contrast agents that were used 

conventionally had problems like low quantum 

yield, poor stability in photo, less sufficient in 

vivo and in vitro stability and also the 

unnecessary interaction with cells and all these 

issues affect the resolution of image during 

application (100). For avoiding these issues, 

probes of many ANPs are being used now 

days. These probes are preferred over others as 

they provide good absorption, stability, 

brightness and biocompatibility. Intravital 

Microscopy involves imaging of surface cells 

using light of visible region (101) while NIR 

light is required to image tissues which are 

situated deeper than 500μm. Great absorber of 

visible light is haemoglobin that absorbs light 

at < 650nm and that of IR light is water which 

absorbs it at > 900nm. Therefore, shape and 

size of ANPs that is used is selected such that 

it shows good absorption in the region 650-

900nm (102). For imaging neck and head 

cancer cells Kopelman et al used AuNRs 

coated with antibody to target cancer specific 

antigens in Computed Tomography (103). As 

reported by Huang et al cancer cells can be 
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successfully imaged by using AuNRs 

functionalised with anti epidermal growth 

factor (104). Photoacoustic tomography 

techniques can monitor vascular events by 

using NRs while using Inter Cellular Adhesion 

Molecule 1 functionalized AuNRs for viability 

of photoacoustic imaging of this molecule, 

Kim et al found that these images had 

difference in normal cells and inflamed cells, 

also these results were in agreement with 

fluorescence images (105). Coating ANPs with 

silica does not include any toxicity and 

enhances the NP uptake. Using such ANPs 

Gambhir et al captured images od spatial 

resolution 340μm and temporal resolution of 

0.2s (106). Among hexapods, rods and cages, 

hexapods were found advantageous in a 

comparative study. High assembly of 

hexapods in cancerous cells intensifies the 

resolution of image and increases 

photothermal destruction of cancerous cells. 

Also in hexapods the localised Plasmonic peak 

can be controlled by changing the length of 

sides which enables the use of visible to NIR 

region light source (107). In two photon 

fluorescence imaging and optical microscopy 

the use of AuNRs has been reported as a 

contrast agent (108,109). It has also been 

reported that two photon fluorescence signal 

arising from AuNRs is 58 times stronger than 

that obtained using Rhodamine molecule 

(109,110). 

Drug Delivery: 

By and large, drug delivery carriers are being 

created with the point of accomplishing high 

drug assembly at the target, so they 

extraordinarily enhance the drug adequacy and 

decrease the toxicity as well as harms amid 

applications (111,113). As ANPs are 

effortlessly surface functionalised using 

polymer for focussing a specific cell, they are 

viewed as a potential possibility for drug 

carrier applications. Many trust that issues like 

actuated effects and multi drug resistance can 

be circumvented by using ANPs for drug 

delivery (114). The drug can be encased on the 

surface of a NP by coating these NPs with 

some polymers. For example, Chen et al used 

Gold NRs which were surface engineered for 

HIV treatments. Manifestation of drug coated 

AuNRs to NIR light actuated the delivery of 

DNA vaccine (115). Similarly for the 

treatment of RS virus a protein formulation of 

respiratory synctial virus fusion based on 

AuNR is also under progress. Premkumar et al 

reported the use of AuNR conjugated with 

doxorubicin for delivering DOX in cancer 

therapy. This conjugation is done by coating 

doxorubicin on AuNRs coated with 

Polystyrene Sulfonate (116). Hydrophilic and 

Hydrophobic drugs have also been reported to 

be delivered by caged AuNRs (117). Highly 

destructive effects under NIR region at 

cancerous cells and selective targeting using 

AuNRs conjugated with some dendrimers on 

its surface has been reported by Cui et al 

(118). 

Photothermal therapy: 

In photothermal therapy, cancer cells are 

destroyed by generating heat with photon’s 

energy. It is a slightly invasive therapeutic 

method for destruction of cancerous cells 

(119). Photo dynamic therapy requires a photo 

sensitizer which generates a singlet oxygen by 

interacting with light to destroy cancerous 

cells (120, 121). Besides being used on a large 

scale for cancer therapy, photo dynamic 

therapy has shortcomings like being not very 

effective in case of deficiently oxygenated 

tumours, lacks complete selectivity and 

assembling photo sensitizer into tumours. 

Also, an unwanted photosensitivity is required 

to reside till the drug is eradicated (122, 123). 

Although authors have reported that PDT 

agents can be extremely restrained to tumours. 

PDT agents have been efficiently delivered to 

the target sites using PEGylated GNP 

conjugates (124-127). Using PEGylated GNP 

conjugates while delivering PGT agents adds 

the advantage of quenching the fluorescence of 

PDT agent till it is delivered at target. Using 

ANPs in PTT increases the effectiveness of 

cancer treatment (122, 123). Heat generation 

in PTT is increased using ANPs due to its 

absorption of light in NIR region and it 

becomes more effective. Photo thermal 
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therapy based on ANPs has shown better 

results as compared to photo dynamic therapy 

under the same experimental conditions (128). 

Normal cells are less damaged while using 

ANPs in Photo thermal therapy as it uses 

longer wavelengths (129, 130). Raviraj et al., 

used AuNRs coated with polyelectrolyte to 

show the synergistic effects of PDT and PTT. 

Desired effects were induced on targeted cells 

using LED arrays of low power without using 

photo sensitizer (131). Epithelial cells were 

treated using NRs coated with anti- EGFR 

monoclonal antibody by El- Sayed and co-

workers. However it has been reported that 

malicious cells are successfully destroyed 

using low power light while a high power light 

results in death of normal cells (132). When 

cancerous cells were exposed to ultrasound at 

in-vitro condition, their internal temperature 

raised to 200C while that in case of in-vivo 

conditions raised to >450C by using Protein 

shell micro bubbles to encapsulate and release 

NRs (133). An increased efficiency has been 

noted while using AuNRs@Pt nanostructures 

for photo thermal therapy against targeted cells 

(132). However, coating Pt at nanostructures 

mildly increases cellular uptake but the 

longitudinal Plasmonic band becomes less 

sensitive while using it (134).

Table 1: 

Comp

osition 

Preparation 

Method 

Size and 

Shape 

Images Ref

eren

ce 

Au Electroche

mical 

method 

532, 

1064nm 

 

135 

Au Seed 

growth 

method 

5-40nm 

 

136 

Au Seed 

growth 

method 

50-

1700nm 

 

137 

Ag Seedless, 

Surfactantl

ess Wet 

Chemical 

Synthesis 

0.15-8µm 

 

138 

Au Chemical 

Synthesis 

1-2µm, 

and 5-

7µm 

 

139 
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Au, Pd Chemical 

Synthesis 

0.5-10 µm 

 

140 

Pt Chemical 

Synthesis 

100nm 

 

141 

Au-Si Precipitatio

n Method 

3-15nm 

(Diameter

) 

 

142 

Au Chemical 

Synthesis 

 

 

143 

Au Chemical 

Method 

10µm 

 

144 

Au Chemical 

Method 

1-200nm 

 

145 

Au Chemical 

Method 

Width 60-

500nm 

Thickness 

6-20nm  

146 

Au Chemical 

Method 

- 

 

147 

Au Seed-

mediated 

approach 

Length 

90nm 

Diameter 

30nm 

 

148 
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Au,Ni, 

Si, 

Cr* 

Top-down 

Method 

50-150nm 

 

149 

Ni,  

Au 

Template 

Assisted 

Synthesis 

50nm 

 

150 

Au, Ni Fabrication 

Method 

50-200nm 

 

151 

Au Seed 

growth 

method 

100nm 

 

152 

Au Chemical 

Method 

3nm 

 

153 

Au Wet 

Chemical 

Method 

140-

160nm 

 

154 

Au Seed 

Growth 

Method 

10-20nm 

 

155 

Au Electroche

mical 

Growth 

Method 

10nm-

4µm 

 

156 
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Au Colloidal 

Reduction 

55-65nm 

 

157 

Au Colloidal 

Reduction 

80—

270nm 

 

158 

Au-Pt Wet 

Chemical 

Method 

100-

390nm 

 

159 

Ag, 

Au 

Seed 

Growth 

Method 

100nm 

 

160 

Au Wet 

Chemical 

Method 

30nm 

 

161 

Ag, 

Au 

Wet 

Chemical 

Method 

10-50nm 

 

162 

Au Wet 

Chemical 

Method 

37nm 

 

163 

Au Wet 

Chemical 

Method 

30-40nm 

 

164 

Au Wet 

Chemical 

Method 

5-25nm 

 

165 
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Au Wet 

Chemical 

Method 

320-

360nm 

 

166 

CoPd Wet 

Chemical 

Method 

14nm 

 

167 
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