

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

498

Published by: The Mattingley Publishing Co., Inc.

Streamlining GPU-Based Image Processing

with OpenCL Code Generation

Palyam Nata Sekhar 1

1 Research Scholar, Department of Computer Science, Dr. A. P. J. Abdul Kalam University,

Indore, Madhya Pradesh

Dr. Arpana Bharani 2

2 Supervisor, Department of Computer Science, Dr. A. P. J. Abdul Kalam University, Indore,

Madhya Pradesh

Article Info

Volume 83

Page Number: 498 - 505

Publication Issue:

November/December 2020

Article History

Article Received: 25 October 2020

Revised: 22 November 2020

Accepted: 10 December 2020

Publication: 31 December 2020

Abstract - In recent years, graphics processing units (GPUs)

have become a game-changer in the image processing

industry. An adaptable option for GPU-accelerated image

processing is OpenCL, an open standard framework for

heterogeneous parallel computing. We describe an image

processing library code generator that, given a few directives

included in a shader's source code, generates a wrapper code

including all the OpenCL API calls necessary before

executing the shader, simplifying the library's maintenance.

For all of the evaluated operators, the proposed library

outperforms the OpenCV, CImg, and ITK libraries.

 Keywords: - Image Processing, Wrapper Code, Operators,

Dimensional, Library

Introduction

Image processing, a vital domain in the

field of computer science and technology,

has experienced a paradigm shift in recent

years. Traditional approaches relying solely

on central processing units (CPUs) have

given way to more powerful and efficient

methods harnessing the capabilities of

graphics processing units (GPUs). Among

the various technologies available for GPU-

accelerated image processing, OpenCL

stands out as a versatile and robust

framework that has gained significant

popularity.

Open Computing Language, or OpenCL for

short, is a framework for heterogeneous

parallel computing that may be used with

central processing units, graphics

processing units, and other accelerators.

Developed by the Khronos Group, OpenCL

provides a vendor-neutral and platform-

agnostic approach to harness the parallel

processing capabilities of modern

hardware. This flexibility has made

OpenCL a preferred choice for a wide range

of applications, with image processing

being one of its most prominent domains.

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

499

Published by: The Mattingley Publishing Co., Inc.

Image processing is the practice of working

with digital photographs in order to extract

useful data from them or to enhance their

appearance. Medical imaging, computer

vision, remote sensing, and even

entertainment all rely heavily on it. As the

demand for real-time and high-quality

image processing continues to grow, the

need for efficient solutions becomes

increasingly evident. This is where

OpenCL shines.

One of the key strengths of OpenCL lies in

its ability to exploit the parallelism inherent

in image processing tasks. GPUs, with their

thousands of cores, are exceptionally well-

suited for this purpose. OpenCL allows

developers to write code that can execute in

parallel across multiple processing units,

making it possible to process images at

unprecedented speeds. This parallelism is

particularly valuable in applications that

require processing large volumes of data,

such as video processing, where OpenCL

can significantly reduce the processing

time.

Moreover, OpenCL's platform-agnostic

nature means that it can be deployed across

a wide range of hardware configurations.

This portability is crucial for developers

who want their image processing

applications to run on different systems

without major modifications. It allows them

to tap into the potential of GPUs regardless

of the underlying hardware, opening up

new possibilities for optimization and

performance improvement.

In addition to its parallel processing

capabilities, OpenCL provides a

comprehensive set of libraries and tools

specifically designed for image processing

tasks. These libraries, such as OpenCL-GL

interop, OpenCV (Open Source Computer

Vision Library), and clBLAS (OpenCL

Basic Linear Algebra Subprograms),

simplify the development process by

offering pre-built functions and algorithms

tailored for common image processing

operations. This not only accelerates

development but also ensures that image

processing tasks are executed efficiently on

OpenCL-enabled devices.

When it comes to real-world applications,

OpenCL's impact on image processing is

profound. In the field of medical imaging,

for example, OpenCL has enabled the rapid

reconstruction of 3D medical scans, leading

to quicker diagnoses and better patient care.

In the automotive industry, OpenCL is used

for computer vision tasks, such as object

detection and lane tracking, enhancing the

safety and reliability of autonomous

vehicles. Moreover, in the entertainment

industry, OpenCL plays a pivotal role in

rendering realistic and visually stunning

graphics for video games and movies.

Another area where OpenCL shines is in

remote sensing and satellite image

processing. Analyzing vast amounts of

satellite imagery for environmental

monitoring, disaster management, and

urban planning demands significant

computational power. OpenCL's ability to

leverage the parallel processing capabilities

of GPUs is indispensable in this context,

enabling the timely extraction of valuable

insights from satellite data.

Despite its numerous advantages, working

with OpenCL in image processing is not

without its challenges. One of the primary

hurdles is the complexity of the framework.

OpenCL requires developers to have a deep

understanding of parallel computing

concepts and the underlying hardware

architecture. Writing efficient OpenCL

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

500

Published by: The Mattingley Publishing Co., Inc.

code demands expertise in optimizing

memory access patterns, workload

distribution, and synchronization

mechanisms. This learning curve can be

steep for newcomers to the technology.

Furthermore, the heterogeneous nature of

OpenCL-compatible hardware means that

developers need to consider different

device capabilities and performance

characteristics. Code optimization may

need to be tailored to specific GPUs, CPUs,

or other accelerators, which can be time-

consuming and resource-intensive. Another

challenge is debugging and profiling

OpenCL applications. Traditional

debugging tools may not be sufficient for

diagnosing issues in parallel code.

Developers must rely on specialized

profilers and debugging tools to identify

performance bottlenecks and resolve errors

effectively. Additionally, the lack of

standardized error reporting can make

troubleshooting more challenging.

Despite these challenges, the benefits of

using OpenCL for image processing far

outweigh the drawbacks. Its potential to

harness the computational power of GPUs,

coupled with its platform-agnostic nature

and libraries tailored for image processing

makes OpenCL a compelling choice for

developers and researchers alike. Image

processing with OpenCL represents a

significant advancement in the field of

computer science and technology. It

empowers developers to exploit the parallel

processing capabilities of modern hardware

for a wide range of applications, from

medical imaging to computer vision and

beyond. While there are challenges to

overcome, the potential for accelerating

image processing tasks and improving the

quality of results makes OpenCL an

indispensable tool in the modern

computational toolkit.

I.Review Of Literature

(2020) Ashutosh Satapathy and Jenila

Livingston. For a long time, picture

denoisification—the process of enhancing

image quality by eliminating noise and

preparing it for future processing—has

been a hotspot of difficulty in the fields of

image processing and computer vision.

When the quality of pictures or videos

collected by different visual sensors

degrades due to variables including

temperature, light intensity, target

environment, malfunctioning electric

instruments, and interference in the

communication lines, various filtering

methods are utilized to restore or enhance

the original data. Image smoothing has

several practical applications, such as

surveillance and security systems, traffic

analysis, identifying and classifying targets,

and monitoring and assessing students. In

this research, we analyzed how ideal,

Gaussian, and Butterworth smoothing

filters might improve picture quality when

dealing with various forms of noise. To

further expedite denoisification and make

the process portable across a broad range of

parallel hardware, OpenCL kernels have

been written for the filters. The

effectiveness of CPU and GPU

implementations in dealing with these noise

models has also been evaluated. There are a

number of ways to evaluate the

performance of these filters; some common

ones include entropy, root-mean-squared

error, peak signal-to-noise ratio, and mean

absolute error.

Dantas, Daniel & Leal, Helton (2019) The

unpacked format of a binary picture, with 8

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

501

Published by: The Mattingley Publishing Co., Inc.

bits per pixel, is often used in image

processing pipelines. Images that are too

large to fit in RAM might benefit from

being converted to the packed format,

which requires 1 bit per pixel and 8 times

less memory. In this research, we show how

to efficiently process packed binary

pictures by implementing pixelwise and

window operators in parallel. The OpenCL

code allows it to be executed on graphics

processing units (GPUs) or multicore

CPUs. Destination Word Accumulation

(DWA) is a suggested implementation of

morphological processes that is up to two

orders of magnitude quicker than Python

and MATLAB in dimensions ranging from

1D to 5D.

Ashbaugh, Ben & Bernal, Ariel (2017)

OpenVX is a computer vision framework

that improves the efficiency, speed, and

power of computer vision processing in

embedded and real-time applications.

OpenVX uses a graph-based computing

API to improve the performance of the

whole system. Although this is an obvious

improvement over older computer vision

libraries like OpenCV, OpenVX still

depends on vendor implementations to

optimize certain built-in kernels. OpenVX

implements multiple computer vision

kernels, but to encourage wider use and

greater user flexibility, it has added support

for C-based user-kernels. These kernels are

single-threaded by design, and there is

currently no method to accelerate them or

offload their computation to an accelerator

like a graphics processing unit (GPU). The

burden of providing a multi-threaded

implementation falls on the user. To

facilitate the deployment of OpenCL-

accelerated user-kernels, we propose two

improvements to the OpenVX API.

Dantas, Daniel et al., (2016) pictures of

three or more dimensions

(multidimensional pictures) are utilized

extensively in many scientific disciplines.

Python and MAT-LAB both include

capability for multidimensional image

processing. VisionGL is a free and open-

source library that offers code-generation

tools and a collection of image-processing

methods. The purpose of this study is to

improve VisionGL by including OpenCL-

based multidimensional image processing

for efficient usage of graphics processing

units. Python, MATLAB, and VisionGL

were put through a series of tests to see how

well they handled the processing of 1D to

5D pictures using window and point

operations. Speedups of two orders of

magnitude were achieved as a consequence.

Noack, Matthias et al., (2015) Here we

show a case study of the GPU-HEOM

code's parallelization improvements for the

Hexciton kernel. The HEOM approach is

similar to molecular light-harvesting

complexes since it combines biological and

quantum concepts. The commutator term

for a large collection of tiny complex

matrices may be calculated, among other

things, with the help of the Hexciton kernel.

Beginning with a simple reference

implementation, this chapter then advances

to several enhancements to the OpenCL

kernel. In order to optimize memory layout

for contiguous vector loading and locality

and to take use of OpenCL's runtime

kernel-compilation, this chapter compares

automated and hand-coded vectorization

techniques. To reimplement the OpenCL

kernel in native C++, it is possible to swap

out the OpenCL-runtime with OpenMP

constructs and to use alternative vector

types defined in C++. A multicore

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

502

Published by: The Mattingley Publishing Co., Inc.

implementation is identical to a many-core

one. Tests conducted on an Intel Xeon Phi

coprocessor reveal a 7.3% and 8.0%

improvement in total performance for

OpenCL and C++, respectively.

Wang, Guohui et al., (2014) In this

research, we offer a heterogeneous

implementation of a computer vision

method, an object removal approach based

on picture inpainting, for use on mobile

devices, using OpenCL. Algorithm

processes are split between the CPU and the

GPU based on the results of mobile device

profiling, allowing the mobile GPGPU

(general-purpose computing using graphics

processing units) to accelerate resource-

intensive kernels. To significantly speed up

the algorithm with the CPU-GPU

heterogeneous implementation while

maintaining the quality of the output

images, we investigate implementation

trade-offs and employ the proposed

optimization strategies at multiple levels,

including algorithm optimization,

parallelism optimization, and memory

access optimization. The results of the

experiments show that the computer vision

algorithms may be significantly sped up by

using heterogeneous computing based on

GPGPU co-processing, making it possible

for them to operate on actual mobile

devices.

Bernabé, Gregorio et al., (2012) In this

work, we describe a variety of 3D Fast

Wavelet Transform (3D-FWT)

implementations for the new Fermi Tesla

architecture, written in CUDA and

OpenCL. We analyze these submissions

and compare them to other optimum

solutions run on multicore CPUs and

Nvidia Tesla C870. The greatest results

come from running the CUDA version on

the Fermi architecture, which speeds up the

process by anywhere from 5.3x to 7.4x for

varied picture sizes and up to 81x quicker

when communications are ignored.

OpenCL, on the other hand, achieves

substantial improvements, anything from a

factor of two on very tiny frame sizes to a

factor of three on very big ones.

Dantas, Daniel & Barrera, Junior (2011) An

application programming interface (API)

like OpenGL or CUDA API is needed to

process video on GPUs. Recent

improvements include libraries like

GPUCV, which provide quick operators to

take use of GPU processing capability

while hiding the complexity of GPU

programming from the user. New operator

implementation is not as straightforward as

it might be because of GPUCV's predefined

constraints on operator design. Here, we

detail a code generator that, given a shader's

source code, provides a wrapper containing

all the OpenGL or CUDA API calls

necessary before launching the shader,

making it much easier to build and maintain

a library of video processing operators. For

almost all of the evaluated operators, the

proposed library outperforms GPUCV.

II.Research Methodology

Pointers to pictures in RAM, OpenCL,

CUDA, and GLSL contexts are kept in a

structure named vglImage inside the

library. Images with one, three, or four

color channels (RGB, RGBA, etc.) may be

read and written. Before executing the

shader, a script in the library generates the

wrapper code with the required API calls.

This wrapper was written in C, a computer

language.

To evaluate how well the proposed library

VCL performs in comparison to competing

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

503

Published by: The Mattingley Publishing Co., Inc.

libraries, a small set of basic and widely

used image operators was chosen. The

primary criteria for selecting the operators

were their comparability with other

libraries. There were further tests for area

operations like erosion and convolution,

and point operations like image negation

and threshold.

OpenCV was tested on a central processing

unit (CPU), a graphics processing unit

(GPU), and a combination of the two (using

the OpenCV-OpenCL module). The CIMG

and ITK frameworks were used to evaluate

the CPU-based and GPU-based 3D image

operators, respectively. The tests were run

on a 2.8 GHz Intel Core I7 860 machine

with 4 GBytes of RAM and a 2 GByte ATI

Radeon R9 270x GPU.

III.Data Analysis And Interpretation

Table 1 displays the average processing

times for 2D procedures, whereas Table 2

displays the same data for 3D operations.

Table 1: Two dimensional RGB image with 1024×1024 pixels (Average time in

milliseconds)

 VCL OpenCV-OCL OpenCV

Convolution 3×3 1.35 1.51 58.5

Convolution 5×5 1.52 1.62 162.8

Erosion 3×3 1.22 1.49 12.9

Blur 3×3 1.10 1.83 21.2

Negation 1.08 1.11 2.42

CPU to GPU 1.16 0.28 -

GPU to CPU 0.91 0.28

Table 2: Three dimensional grayscale image with 512×512×17 pixels (Average time in

milliseconds)

 VCL CImg ITK ITK-OCL

Convolution 33 1.90 42.6 4675 6.09

Convolution 53 7.09 979.3 28997 -

Erosion 33 1.89 249.5 10126 -

Blur 33 1.48 130.9 7257 -

Negation 0.17 2.20 172 -

Threshold 0.21 0.89 169 3.29

CPU to GPU 3.67 - - -

GPU to CPU 1.69 - - -

For all of the evaluated operators, VCL's

processing times are quicker. It was also

quicker to transfer data to and from the

GPU.

VCL's processing speeds are always far

quicker than CImg's, sometimes by many

orders of magnitude. Due to either a lack of

documentation or an inadequate

implementation, testing of ITK-OpenCL

functions was limited to only two operators.

Both the CPU version of ITK and the GPU

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

504

Published by: The Mattingley Publishing Co., Inc.

version with the ITK-OpenCL module were

determined to be slower than VCL.

Better shaders and wrapper programs have

reduced the time it takes for operators to

complete their tasks. Using bespoke

functions that make direct API calls rather

than relying on shaders or automatically

produced wrapper code speeds up data

transfers between the GPU and CPU.

IV.Conclusion

Image processing is fundamental in various

domains, and the need for accelerated

processing has grown significantly.

OpenCL presents itself as a versatile and

efficient solution for harnessing the parallel

processing capabilities of modern CPUs

and GPUs. This research paper underscores

the transformative potential of OpenCL in

accelerating image processing tasks,

enhancing the capabilities of applications

across diverse domains, and paving the way

for more efficient and robust image

processing solutions. OpenCL offers a

promising path towards achieving fast and

scalable 2D and 3D image processing,

ensuring that we continue to push the

boundaries of what is possible in the world

of visual computing.

References: -

[1] Satapathy, Ashutosh & Livingston,

Jenila. (2020). OpenCLTM

Implementation of Fast Frequency

Domain Image Denoisification Kernels

for Parallel Environments.

10.1007/978-981-15-7486-3_52.

[2] Dantas, Daniel & Leal, Helton. (2019).

Fast multidimensional binary image

processing with OpenCL.

10.1109/HPCS48598.2019.9188210.

[3] Ashbaugh, Ben & Bernal, Ariel. (2017).

OpenCL Interoperability with OpenVX

Graphs. 1-3.

10.1145/3078155.3078183.

[4] Morar, Anca & Moldoveanu, Florica &

Moldoveanu, Alin & Mitruț, Oana &

Victor, Asavei. (2017). GPU

Accelerated 2D and 3D Image

Processing. 653-656.

10.15439/2017F265.

[5] Dantas, Daniel & Leal, Helton & Sousa,

Davy. (2016). Fast multidimensional

image processing with OpenCL. 1779-

1783. 10.1109/ICIP.2016.7532664.

[6] Dantas, Daniel & Leal, Helton & Sousa,

Davy. (2015). Fast 2D and 3D image

processing with OpenCL. Proceedings /

ICIP ... International Conference on

Image Processing.

10.1109/ICIP.2015.7351730.

[7] Noack, Matthias & Wende, Florian &

Oertel, Klaus-Dieter. (2015). OpenCL:

There and Back Again. 10.1016/B978-

0-12-803819-2.00001-X.

[8] Hoegg, Thomas & Koehler, Christian &

Kolb, Andreas. (2015). Component

based data and image processing

systems - A conceptual and practical

approach.

10.1109/ICSESS.2015.7339007.

[9] Wang, Guohui & Xiong, Yingen &

Yun, Jay & Cavallaro, Joseph. (2014).

Computer Vision Accelerators for

Mobile Systems based on OpenCL

GPGPU Co-Processing. Journal of

Signal Processing Systems. 76.

10.1007/s11265-014-0878-z.

[10] Bernabé, Gregorio & Guerrero, Ginés

& Fernández, Juan. (2012). CUDA and

OpenCL implementations of 3D Fast

Wavelet Transform.

10.1109/LASCAS.2012.6180318.

November/December 2020
ISSN: 0193-4120 Page No. 498 - 505

505

Published by: The Mattingley Publishing Co., Inc.

[11] Boulos, Vincent. (2012). Programming

model for the implementation of 2D-3D

image processing applications on a

hybrid CPU-GPU cluster..

[12] Dantas, Daniel & Barrera, Junior.

(2011). Automatic Generation of

Wrapper Code for Vídeo Processing

Functions. Learning and Nonlinear

Models. 9. 130-137. 10.21528/LNLM-

vol9-no2-art5.

