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ABSTRACT 

Let 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵] denote the class of functions 𝑓(𝑧) = 𝑧𝑝 +

∑  ∞
𝑛=1 𝑎𝑝+𝑛𝑧

𝑝+𝑛 

analytic in 𝑢 = {𝑧: |𝑧| < 1}, such that 𝑝 +
1

𝑏
{
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
− 𝑝} =

𝑝(1 − 𝜇) + 𝑝𝜇 {
1+𝐴𝑧

1+𝐵𝑧
} , 𝑧 ∈ 𝑢, 

where −1 ≤ 𝐵 < 𝐴 ≤ 1,0 < 𝜇 ≤ 1, 𝜆 > −𝑝 and 𝑏 is any non-zero 

complex number. In this paper, we investigate certain properties of 

the above-mentioned class. 

 

 

1. INTRODUCTION 

Let 𝒜𝑝 denote the class of 

functions 𝑓(𝑧) = 𝑧𝑝 + ∑𝑛=1
∞  𝑎𝑝+𝑛𝑧

𝑝+𝑛, 𝑝 

is a positive integer, which are analytic in 

the unit disc 𝑢 = {𝑧: |𝑧| < 1}. If 𝑓 and 𝑔 

are any two functions in the class 𝒜𝑝 such 

that 𝑓(𝑧) = 𝑧𝑝 + ∑𝑛=1
∞  𝑎𝑝+𝑛𝑧

𝑝+𝑛 and 

𝑔(𝑧) = 𝑧𝑝 + ∑𝑛=1
∞  𝑏𝑝+𝑛𝑧

𝑝+𝑛, then the 

convolution or Hadamard product of 𝑓 and 

𝑔, denoted by 𝑓 ∗ 𝑔, is defined by the 

power series 

(𝑓 ∗ 𝑔)(𝑧) = 𝑧𝑝 +∑  

∞

𝑛=1

𝑎𝑝+𝑛𝑏𝑝+𝑛𝑧
𝑝+𝑛 

Let 

𝐷𝜆+𝑝−1𝑓(𝑧) =
𝑧𝑝(𝑧𝜆−1𝑓(𝑧))

(𝜆+𝑝−1)

(𝜆 + 𝑝 − 1)!
, 𝜆

> −𝑝 

Then, following Al-Amiri [1], we 

shall1 refer to 𝐷𝜆+𝑝−1, 𝑓(𝑧) as the (𝜆 +

𝑝 − 1)𝑡ℎ order Rugcheweyh derivative of 

the function 𝑓. It ia easy to observe that 

𝐷𝜆+𝑝−1𝑓(𝑧) =
𝑧𝑝

(1 − 𝑧)𝜆+𝑝
∗ 𝑓(𝑧). 

Goel and Sohi [5] studied the class 

𝒮𝜆,𝑝(𝛽) of those functions of 𝒜𝑝 which 

satisfy 
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Re {
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
} > 𝑝𝛽, 𝑧 ∈ 𝑢 (1.1) 

where 0 ≤ 𝛽 < 1. They showed that the 

functions in the class 𝒮𝜆,𝑝(𝛽) are 𝑝-valent 

in 𝑢. As usual for other class of 𝑝-valent 

functions, 𝛽 may be called the order of 

function in the class 𝒮𝜆,𝑝(𝛽), Aouf 

([2], [3]) and Nasr and Aouf 

([9], [10], [11], [12]) have introduced 

some classes of univalent and 𝑝-valent 

functions of complex order. But no one 

has, so far, introduced a class of functions 

of complex order in this direction defined 

by Convolution. Considering this natural 

problem, we now introduce a class 

𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵] as defined below: 

A function of 𝑓 of 𝒜𝑝 belongs to 

the class 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵] if and only if there 

exist a function 𝑊(𝑧) analytic in 𝑢 and 

satisfying 𝑊(𝑜) = 0 and |𝑊(𝑧)| < 1 for 

𝑧 ∈ 𝑢, such that 

𝑝 +
1

𝑏
{
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
− 𝑝} = 𝑝(1 − 𝜇) +

𝑝𝜇 [
1+𝐴𝑊(𝑧)

1+𝐵𝑊(𝑧)
] , 𝑧 ∈ 𝑢  (1.2) 

where −1 ≤ 𝐵 < 𝐴 ≤ 1,0 < 𝜇 ≤ 1, 𝜆 >

−𝑝 and 𝑏 is any non-zero complex 

number. 

It is easy to see that the condition 

(1.2) is equivalent to 

|
|

(𝐷𝜆+𝑝−1𝑓(𝑧))
′
−𝑝

𝑧𝑝−1

𝜇(𝐴−𝐵)𝑏𝑝−𝐵{
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
−𝑝}

|
| < 1, 𝑧 ∈ 𝑢.

   (1.3) 

By giving specific value to 

𝜆, 𝜇, 𝑏, 𝐴 and 𝐵 in (1.3), we obtain the 

following subclasses studied by various 

researchers in earlier works: 

(i) For 𝑏 = cos 𝛿𝑒−𝑖𝛿, we obtain the class 

of functions 𝑓(𝑧) satisfying the condition 

|
|

𝑒𝑖𝛿 {
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
− 𝑝}

𝜇(𝐴 − 𝐵)𝑝cos 𝛿 − 𝐵𝑒𝑖𝛿 {
(𝐷𝜆+𝑝−1𝑓(𝑧))′

𝑧𝑝−1
− 𝑝}

|
|

< 1, 𝑧 ∈ 𝑢. 

where 𝛿 ∈ (−
𝜋

2
,
𝜋

2
), studied by Shukla and 

Chaudhary [13]. 

(ii) For 𝜇 = 1 and 𝑏 = 1, we obtain the 

class of functions 𝑓(𝑧) satisfying the 

condition 

|
|

{
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
− 𝑝}

(𝐴 − 𝐵)𝑝 − 𝐵 {
(𝐷𝜆+𝑝−1𝑓(𝑧))′

𝑧𝑝−1
− 𝑝}

|
|

< 1, 𝑧 ∈ 𝑢 

studied by Kumar and Shukla [8].  

(iii) For 𝜇 = 1, 𝐴 = (1 − 2𝛽), 𝐵 = −1 

and 𝑏 = 1, we obtain the class of functions 

𝑓(𝑧) satisfying the condition (1.1), studied 

by Goel and Sohi [5]. 

(iv) For 𝜇 = 1, 𝑏 = 1 and 𝜆 = 1 − 𝑝, we 

obtain the class of functions 𝑓(𝑧) 

satisfying the condition 

|

𝑓′(𝑧)
𝑧𝑝−1

− 𝑝

(𝐴 − 𝐵)𝑝 − 𝐵 {
𝑓′(𝑧)
𝑧𝑝−1

− 𝑝}
| < 1, 𝑧 ∈ 𝑢 

studied by Chen [4]. 

Thus the study of the class 

𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵] provides a unified approach 

for the classes considered by Shukla and 

Chaudhary [13], Kumar and Shukla [8], 

Goel and Sohi [5], and Chen [4]. 
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In the present paper, firstly, we 

obtain the basic inclusion relation 

𝑉𝜆+1,𝑝,𝜇
𝑏 [𝑎, 𝐵] ⊂ 𝑉𝜆,𝑝,𝜇

𝑏 [𝐴, 𝐵]. 

Then we obtain coefficient 

estimate, sufficient condition in terms of 

coefficients distortion theorem and 

maximization of |𝑎𝑝+2 − 𝛽𝑎𝑝+1
2 | over the 

class 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵]. In the last, we show that 

the class 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵] is closed under 

"arithmetic mean". 

 

2. PRELIMINARY LEMMAS 

We state lemma 2.1 due to Jack 

[6], lemma 2.2 due to Keogh and Merkes 

[7] and prove a lemma 2.3 that are needed 

in section 3 . 

 

Lemma 2.1. If the function 𝑊 is analytic 

for |𝑧| ≤ 𝑟 < 1,𝑊(𝑜) = 0 and 

|𝑊(𝑧0)| = max
|𝑧|=𝑟

 |𝑊(𝑧)|, then 

𝑧0𝑊
′(𝑧0) = 𝜉𝑊(𝑧0) 

where 𝜉 is a real number such that 𝜉 ≥ 1. 

 

Lemma 2.2. Let 𝑊(𝑧) = ∑𝑘=1
∞  𝑐𝑘𝑧

𝑘 be 

analytic with |𝑊(𝑧)| < 1 in 𝑢. If 𝑑 is a 

complex number, then 

|𝑐2 − 𝑑𝑐1
2| ≤ m  {1, |𝑑|}. 

Equality may be attained with the 

functions 𝑊(𝑧) = 𝑧2,𝑊(𝑧) = 𝑧. 

 

Lemma 2.3. A function 𝑓(𝑧) of 𝒜𝑝 

belongs to the class 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵], −1 <

𝐵 < 𝐴 ≤ 1, if and only if 

|𝐺𝑝(𝑧) − 𝑚| < 𝑀, 𝑧 ∈ 𝑢 (2.1) 

where 

𝐺𝑝(𝑧) = 𝑝 +
1

𝑏
{
(𝐷𝜆+𝑝−1𝑓(𝑧))

′

𝑧𝑝−1
− 𝑝} (2.2) 

𝑚 = 𝑝 −
𝜇(𝐴 − 𝐵)𝐵𝑝

1 − 𝐵2
 

and 

𝑀 =
𝜇(𝐴 − 𝐵)𝑝

1 − 𝐵2
. 

Proof. Suppose that 𝑓(𝑧) ∈ 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵]. 

Then from (1.2) we have 

𝐺𝑝(𝑧) = 𝑝 [
1 + (𝜇(𝐴 − 𝐵) + 𝐵)𝑊(𝑧)

1 + 𝐵𝑊(𝑧)
] 

where 𝐺𝑝(𝑧) is defined by (2.2). 

Therefore 

 
(2.3) 

It is clear that the function ℎ(𝑧) 

satisfies |ℎ(𝑧)| < 1. Hence (2.1) follows 

from (2.3). Conversely, suppose that the 

inequality (2.1) holds. Then 

|
𝐺𝑝(𝑧)

𝑀
−
𝑚

𝑀
| < 1. 

Let 

𝑔(𝑧) =
𝐺𝑝(𝑧)

𝑀
−
𝑚

𝑀
 

and 

𝑊(𝑧) =
𝑔(𝑧)−𝑔(0)

1−𝑔(0)𝑔(𝑧)

=
{𝐺𝑝(𝑧)−𝑝}

𝜇(𝐴−𝐵)𝑝−𝐵{𝐺𝑝(𝑧)−𝑝}

  

  (2.4) 

Clearly 𝑊(0) = 0 and |𝑊(𝑧)| <

1, Rearranging (2.4) we arrive at (1.3). 

Hence 𝑓(𝑧) ∈ 𝑉𝜆,𝑝,𝜇
𝑏 𝜇, [𝐴, 𝐵] 

Note. The condition (2.1) can also be 

written as 



 

September-October 2019 

ISSN: 0193-4120 Page No. 223-227 

May-June 2020 
ISSN: 0193-4120 Page No. 1 - 08 

 

 

226 Published by: The Mattingley Publishing Co., Inc. 

|
(1 − 𝐵)(𝐺𝑝(𝑧) − 𝑝) + 𝜇(𝐴 − 𝐵)𝑝

𝜇(𝐴 − 𝐵)𝑝

−
1

1 + 𝐵
| <

1

1 + 𝐵
, 𝑧 ∈ 𝑢. 

Now as 𝐵 → −1, the above 

condition reduces to 

Re[𝐺𝑝(𝑧)] >
1

2
[2 − 𝜇(1 + 𝐴)]𝑝, 𝑧 ∈ 𝑢, 

which is equivalent to (1.3), when 𝐵 =

−1. Thus including the limiting case 𝐵 →

−1, the results proved with the help of 

above lemma will hold for −1 ≤ 𝐵 < 𝐴 ≤

1. 

 

3. MAIN RESULTS 

The proof of each of the following 

theorems runs parallel to that of the 

corresponding assertion made by Shukla 

and Chaudhary [13] in the special case 𝑏 =

cos 𝛿𝑒−𝑖𝛿, and we omit the details 

involved.  

 

Theorem 3.1. Let 𝜆0 be any integer such 

that 𝜆0 > 𝜆. Then 

𝑉𝜆0,𝑝,𝜇
𝑏 [𝐴, 𝐵] ⊂ 𝑉𝜆,𝑝,𝜇

𝑏 [𝐴, 𝐵]. 

 

Theorem 3.2. If 𝑓(𝑧) = 𝑧𝑝 +

∑𝑛=1
∞  𝑎𝑝+𝑛𝑧

𝑝+𝑛 belongs to the class 

𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵], then 

|𝑎𝑝+𝑛| ≤
𝜇(𝐴−𝐵)𝑝|𝑏|

(𝑝+𝑛)𝛼(𝜆,𝑛)
, 𝑛 = 1,2,… (3.1) 

where 

𝛼(𝜆, 𝑛) = [
𝜆 + 𝑝 + 𝑛 − 1
𝜆 + 𝑝 − 1

]  (3.2) 

The inequality (3.1) is sharp. 

 

Theorem 3.3. Let 𝑓(𝑧) = 𝑧𝑝 +

∑𝑛=1
∞  𝑎𝑝+𝑛𝑧

𝑝+𝑛 be analytic in 𝑢. 

If 

∑  ∞
𝑛=1 (1 − 𝐵)𝛼(𝜆, 𝑛)(𝑝 + 𝑛)|𝑎𝑝+𝑛| ≤

𝜇(𝐴 − 𝐵)𝑝|𝑏|,   (3.3) 

where 𝛼(𝜆, 𝑛) is defined by (3.2), then 𝑓 ∈

𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵]. The inequality (3.3) is sharp. 

Further, the converse need not be true. 

 

Theorem 3.4. If 𝑓 ∈ 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵], then 

 
These inequalities are sharp. 

 

Theorem 3.5. If 𝑓(𝑧) = 𝑧𝑝 +

∑𝑛=1
∞  𝑎𝑝+𝑛𝑧

𝑝+𝑛 belongs to the class 

𝑉𝜆,𝑝𝜇
𝑏 [𝐴, 𝐵], then for any complex number 

𝛽, we obtain 

|𝑎𝑝+2 − 𝛽𝑎𝑝+1
2 |

≤
𝜇(𝐴 − 𝐵)𝑝|𝑏|

𝛼(𝜆, 2)(𝑝 + 2)
m  {1, |𝑑|} 

where 

𝑑

=
𝜇(𝐴 − 𝐵)𝑏𝑝𝛽𝛼(𝜆, 2)(𝑝 + 2) + 𝐵{𝛼(𝜆, 1)}2(𝑝 + 1)2

{𝛼(𝜆, 1)}2(𝑝 + 1)2
. 

The result is sharp. 

 

Theorem 3.6. Let 𝑐 be a real number such 

that 𝑐 > −𝑝. If 𝑓(𝑧) ∈ 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵], then 

the function 𝐹(𝑧) defined by 

𝐹(𝑧) =
(𝑐 + 𝑝)

𝑧𝑐
∫  
𝑧

0

𝑡𝑐−1𝑓(𝑡)𝑑𝑡 

also belongs to the 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵].  
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Theorem 3.7. If the function 𝑓(𝑧) and 

𝑔(𝑧) belong to 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵] and 0 ≤ 𝑠 ≤ 1, 

then the function 𝐹(𝑧) defined by 

𝐹(𝑧) = 𝑠𝑓(𝑧) + (1 − 𝑠)𝑔(𝑧) 

also belongs to 𝑉𝜆,𝑝,𝜇
𝑏 [𝐴, 𝐵]. 
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