

A Convolution Approach to Certain Subclasses of Multivalent Functions Related to Complex Order

Nalini Shukla

Department of Mathematics Janta College, Bakewar, Etawah-206124 (U.P.)

Article Info Volume 83 Page Number: 223 - 227 Publication Issue: September-October 2019

ABSTRACT

Let $V_{\lambda,p,\mu}^{b}[A,B]$ denote the class of functions $f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$

analytic in $u = \{z: |z| < 1\}$, such that $p + \frac{1}{b} \left\{ \frac{(D^{\lambda+p-1}f(z))'}{z^{p-1}} - p \right\} = p(1-\mu) + p\mu \left\{ \frac{1+Az}{1+Bz} \right\}, z \in u,$

Article HistorywlArticle Received : 3 January 2019wlRevised: 25 March2019coAccepted: 28 July2019thePublication: 20 October 2019

where $-1 \le B < A \le 1, 0 < \mu \le 1, \lambda > -p$ and *b* is any non-zero complex number. In this paper, we investigate certain properties of the above-mentioned class.

1. INTRODUCTION

Let \mathcal{A}_p denote the class of functions $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$, pis a positive integer, which are analytic in the unit disc $u = \{z: |z| < 1\}$. If f and gare any two functions in the class \mathcal{A}_p such that $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ and $g(z) = z^p + \sum_{n=1}^{\infty} b_{p+n} z^{p+n}$, then the convolution or Hadamard product of f and g, denoted by f * g, is defined by the power series

$$(f * g)(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n}$$

Let

$$D^{\lambda+p-1}f(z) = \frac{z^p (z^{\lambda-1}f(z))^{(\lambda+p-1)}}{(\lambda+p-1)!}, \lambda$$

> -p

Then, following Al-Amiri [1], we shall refer to $D^{\lambda+p-1}$, f(z) as the $(\lambda + p - 1)^{th}$ order Rugcheweyh derivative of the function f. It is easy to observe that

$$D^{\lambda+p-1}f(z) = \frac{z^p}{(1-z)^{\lambda+p}} * f(z).$$

Goel and Sohi [5] studied the class $S_{\lambda,p}(\beta)$ of those functions of \mathcal{A}_p which satisfy

$$\operatorname{Re}\left\{\frac{\left(D^{\lambda+p-1}f(z)\right)'}{z^{p-1}}\right\} > p\beta, \ z \in u \qquad (1.1)$$

where $0 \le \beta < 1$. They showed that the functions in the class $S_{\lambda,p}(\beta)$ are *p*-valent in u. As usual for other class of p-valent functions, β may be called the order of function in the class $S_{\lambda,p}(\beta)$, Aouf ([2], [3])and Nasr and Aouf ([9], [10], [11], [12]) have introduced some classes of univalent and p-valent functions of complex order. But no one has, so far, introduced a class of functions of complex order in this direction defined by Convolution. Considering this natural problem, we now introduce a class $V_{\lambda,p,\mu}^{b}[A, B]$ as defined below:

A function of f of \mathcal{A}_p belongs to the class $V_{\lambda,p,\mu}^b[A,B]$ if and only if there exist a function W(z) analytic in u and satisfying W(o) = 0 and |W(z)| < 1 for $z \in u$, such that

$$p + \frac{1}{b} \left\{ \frac{\left(D^{\lambda + p - 1} f(z) \right)'}{z^{p - 1}} - p \right\} = p(1 - \mu) + p\mu \left[\frac{1 + AW(z)}{1 + BW(z)} \right], \ z \in u$$
(1.2)

where $-1 \le B < A \le 1, 0 < \mu \le 1, \lambda >$ -*p* and *b* is any non-zero complex number.

It is easy to see that the condition (1.2) is equivalent to

$$\left|\frac{\frac{\left(D^{\lambda+p-1}f(z)\right)'-p}{z^{p-1}}}{\mu(A-B)bp-B\left\{\frac{\left(D^{\lambda+p-1}f(z)\right)'}{z^{p-1}}-p\right\}}\right| < 1, \ z \in u.$$

$$(1.3)$$

By giving specific value to λ, μ, b, A and B in (1.3), we obtain the

following subclasses studied by various researchers in earlier works:

(i) For $b = \cos \delta e^{-i\delta}$, we obtain the class of functions f(z) satisfying the condition

$$\left| \frac{e^{i\delta} \left\{ \frac{\left(D^{\lambda+p-1}f(z)\right)'}{z^{p-1}} - p \right\}}{\mu(A-B)p\cos \delta - Be^{i\delta} \left\{ \frac{\left(D^{\lambda+p-1}f(z)\right)'}{z^{p-1}} - p \right\}} \right|$$

< 1, $z \in u$.

where $\delta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, studied by Shukla and Chaudhary [13].

(ii) For $\mu = 1$ and b = 1, we obtain the class of functions f(z) satisfying the condition

$$\frac{\left\{\frac{\left(D^{\lambda+p-1}f(z)\right)'}{z^{p-1}} - p\right\}}{(A-B)p - B\left\{\frac{(D^{\lambda+p-1}f(z))'}{z^{p-1}} - p\right\}} < 1, z \in u$$

studied by Kumar and Shukla [8].

(iii) For $\mu = 1, A = (1 - 2\beta), B = -1$ and b = 1, we obtain the class of functions f(z) satisfying the condition (1.1), studied by Goel and Sohi [5].

(iv) For $\mu = 1, b = 1$ and $\lambda = 1 - p$, we obtain the class of functions f(z) satisfying the condition

$$\left|\frac{\frac{f'(z)}{z^{p-1}} - p}{(A-B)p - B\left\{\frac{f'(z)}{z^{p-1}} - p\right\}}\right| < 1, z \in u$$

studied by Chen [4].

Thus the study of the class $V_{\lambda,p,\mu}^{b}[A,B]$ provides a unified approach for the classes considered by Shukla and Chaudhary [13], Kumar and Shukla [8], Goel and Sohi [5], and Chen [4].

In the present paper, firstly, we obtain the basic inclusion relation

 $V_{\lambda+1,p,\mu}^{b}[a,B] \subset V_{\lambda,p,\mu}^{b}[A,B].$

Then we obtain coefficient estimate, sufficient condition in terms of coefficients distortion theorem and maximization of $|a_{p+2} - \beta a_{p+1}^2|$ over the class $V_{\lambda,p,\mu}^b[A, B]$. In the last, we show that the class $V_{\lambda,p,\mu}^b[A, B]$ is closed under "arithmetic mean".

2. PRELIMINARY LEMMAS

We state lemma 2.1 due to Jack [6], lemma 2.2 due to Keogh and Merkes [7] and prove a lemma 2.3 that are needed in section 3.

Lemma 2.1. If the function *W* is analytic for $|z| \le r < 1, W(o) = 0$ and $|W(z_0)| = \max_{\substack{|z|=r}} |W(z)|$, then $z_0 W'(z_0) = \xi W(z_0)$ where ξ is a real number such that $\xi \ge 1$.

Lemma 2.2. Let $W(z) = \sum_{k=1}^{\infty} c_k z^k$ be analytic with |W(z)| < 1 in *u*. If *d* is a complex number, then

 $|c_2 - dc_1^2| \le m \{1, |d|\}.$

Equality may be attained with the functions $W(z) = z^2$, W(z) = z.

Lemma 2.3. A function f(z) of \mathcal{A}_p belongs to the class $V_{\lambda,p,\mu}^b[A,B], -1 < B < A \le 1$, if and only if

 $\left|G_p(z) - m\right| < M, \ z \in u \qquad (2.1)$

$$G_p(z) = p + \frac{1}{b} \left\{ \frac{\left(D^{\lambda + p - 1} f(z) \right)'}{z^{p - 1}} - p \right\}$$
(2.2)

where

$$m = p - \frac{\mu(A-B)Bp}{1-B^2}$$

and

$$M = \frac{\mu(A-B)p}{1-B^2}.$$

Proof. Suppose that $f(z) \in V_{\lambda,p,\mu}^{b}[A, B]$. Then from (1.2) we have $G_{p}(z) = p\left[\frac{1 + (\mu(A - B) + B)W(z)}{1 + BW(z)}\right]$ where $G_{p}(z)$ is defined by (2.2).

where $G_p(z)$ is defined by (2.2) Therefore

$$G_p(z) - m = \frac{(p-m) + [\{B + \mu(A-B)\}p - Bm]W(z)}{1 + BW(z)}$$

$$= M\left[\frac{B+W(z)}{1+BW(z)}\right] = Mh(z)$$

(2.3)

It is clear that the function h(z) satisfies |h(z)| < 1. Hence (2.1) follows from (2.3). Conversely, suppose that the inequality (2.1) holds. Then

$$\left|\frac{G_p(z)}{M} - \frac{m}{M}\right| < 1.$$

Let

$$g(z) = \frac{G_p(z)}{M} - \frac{m}{M}$$

and

$$W(z) = \frac{g(z) - g(0)}{1 - g(0)g(z)}$$

= $\frac{\{G_p(z) - p\}}{\mu(A - B)p - B\{G_p(z) - p\}}$
(2.4)

Clearly W(0) = 0 and |W(z)| < 1, Rearranging (2.4) we arrive at (1.3).

Hence $f(z) \in V_{\lambda,p,\mu}^b \mu$, [A, B]

Note. The condition (2.1) can also be written as

$$\frac{\left|\frac{(1-B)(G_p(z)-p)+\mu(A-B)p}{\mu(A-B)p} - \frac{1}{1+B}\right| < \frac{1}{1+B}, \ z \in u$$

Now as $B \rightarrow -1$, the above condition reduces to

Re $[G_p(z)] > \frac{1}{2} [2 - \mu(1 + A)]p, z \in u$, which is equivalent to (1.3), when B =-1. Thus including the limiting case $B \rightarrow$ -1, the results proved with the help of above lemma will hold for $-1 \le B < A \le$ 1.

3. MAIN RESULTS

The proof of each of the following theorems runs parallel to that of the corresponding assertion made by Shukla and Chaudhary [13] in the special case $b = \cos \delta e^{-i\delta}$, and we omit the details involved.

Theorem 3.1. Let λ_0 be any integer such that $\lambda_0 > \lambda$. Then $V_{\lambda_0,p,\mu}^b[A,B] \subset V_{\lambda,p,\mu}^b[A,B].$

Theorem 3.2. If $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ belongs to the class $V_{\lambda,p,\mu}^b[A,B]$, then $|a_{p+n}| \leq \frac{\mu(A-B)p|b|}{(p+n)\alpha(\lambda,n)}$, n = 1,2,... (3.1) where

$$\alpha(\lambda, n) = \begin{bmatrix} \lambda + p + n - 1 \\ \lambda + p - 1 \end{bmatrix}$$
(3.2)
The inequality (3.1) is sharp.

Theorem 3.3. Let $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ be analytic in u.

If $\sum_{n=1}^{\infty} (1-B)\alpha(\lambda,n)(p+n) |a_{p+n}| \leq \mu(A-B)p|b|, \qquad (3.3)$

 $\mu(A - B)p|b|,$ (3.3) where $\alpha(\lambda, n)$ is defined by (3.2), then $f \in V_{\lambda,p,\mu}^{b}[A, B]$. The inequality (3.3) is sharp. Further, the converse need not be true.

Theorem 3.4. If $f \in V_{\lambda,p,\mu}^{b}[A, B]$, then

$$\frac{p(1-B^2r^2) - p\mu Br^2(A-B)\operatorname{Re}(b) + \mu(A-B)p|b|r}{1-B^2r^2} \le \operatorname{Re}\left\{\frac{\left(D^{\lambda+p-1}f(z)\right)'}{z^{p-1}}\right\}$$
$$\le \frac{p(1-B^2r^2) - p\mu Br^2(A-B)\operatorname{Re}(b) + \mu(A-B)p|b|r}{1-B^2r^2}$$

These inequalities are sharp.

Theorem 3.5. If $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ belongs to the class $V_{\lambda,p\mu}^b[A, B]$, then for any complex number β , we obtain

$$|a_{p+2} - \beta a_{p+1}^{2}| \le \frac{\mu(A - B)p|b|}{\alpha(\lambda, 2)(p+2)} m \{1, |d|\}$$

where

d

$$=\frac{\mu(A-B)bp\beta\alpha(\lambda,2)(p+2)+B\{\alpha(\lambda,1)\}^2(p+1)^2}{\{\alpha(\lambda,1)\}^2(p+1)^2}$$

The result is sharp.

Theorem 3.6. Let *c* be a real number such

that c > -p. If $f(z) \in V_{\lambda,p,\mu}^{b}[A, B]$, then the function F(z) defined by

$$F(z) = \frac{(c+p)}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt$$

also belongs to the $V_{\lambda,p,\mu}^{b}[A, B]$.

F(Z) = Sf(Z) + (1 - S)g(Z)also belongs to $V_{\lambda,p,\mu}^{b}[A, B]$.

REFERENCES

- 1. H. S. Al-Amiri, On Rugcheweyh derivative, *Ann. Polon. Math.*, **38** (1980), 87-94.
- M. K. Aouf, *p*-valent classes related to convex function of complex order, *Rocky Mountain J. Math.*, 15 (1985).
- M. K. Aouf, A generalization of starlike functions of complex order, *Houston J. Math.*, 1985.
- M. P. Chen, A class of p-valent analytic functions, *Soochow J. Math.*, 8 (1982), 15-26.
- R. M. Goel and N. S. Sohi, New criteria for p-valence, *Indian J. Pure Appl. Math.*, **11** (1980), 1356-1360.
- S. Jack, Functions starlike and convex of order α, *London Math. Soc.*, 3 (1971), 469-474.
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, *Proc. Amer. math. Soc.*, **20** (1969), 8-12.
- V. Kumar and S. L. Shukla, Multivalent functions defined Ruscheweyh derivatives II, *Indian J. Pure Appl. Math.*, (1984), 1228-1238.
- M. A. Nasr and M. K. Aouf, On convex function of complex order, *Mansoura Sci. Bull.*, (1982),565-585

- M. A. Nasr and M. K. Aouf, Bounded convex function of complex order, *Bull. Fac. Sci. Uni. Mangoura* 10 (1983).
- M. A. Nasr and M. K. Aouf. Bounded starlike function of complex order, *Proc. Indian Acad. Sci. (Math. Sci.)*, **92** (1983), 97-102.
- M. A. Nasr and M. K. Aouf, Starlike function of complex order, *J. Natural Sci. Math.*, 25 (1985)
- S. L. Shukla and A. M. Chaudhary, On a class of multivalent functions defined by Ruscheweyh derivative, *Soochow J. Math.*, 1 (1988), 119-133.