A Convolution Approach to Certain Subclasses of Multivalent Functions Related to Complex Order

Nalini Shukla
Department of Mathematics
Janta College, Bakewar, Etawah-206124 (U.P.)

Article Info
Volume 83
Page Number: 223-227
Publication Issue:
September-October 2019

Article History
Article Received : 3 January 2019
Revised: 25 March2019
Accepted: 28 July2019
Publication: 20 October 2019

Abstract

Let $V_{\lambda, p, \mu}^{b}[A, B]$ denote the class of functions $f(z)=z^{p}+$ $\sum_{n=1}^{\infty} a_{p+n} Z^{p+n}$ analytic in $u=\{z:|z|<1\}$, such that $p+\frac{1}{b}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}=$ $p(1-\mu)+p \mu\left\{\frac{1+A z}{1+B z}\right\}, z \in u$, where $-1 \leq B<A \leq 1,0<\mu \leq 1, \lambda>-p$ and b is any non-zero complex number. In this paper, we investigate certain properties of the above-mentioned class.

1. INTRODUCTION

Let \mathcal{A}_{p} denote the class of functions $f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n}, p$ is a positive integer, which are analytic in the unit disc $u=\{z:|z|<1\}$. If f and g are any two functions in the class \mathcal{A}_{p} such that $f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ and $g(z)=z^{p}+\sum_{n=1}^{\infty} b_{p+n} z^{p+n}$, then the convolution or Hadamard product of f and g, denoted by $f * g$, is defined by the power series

$$
(f * g)(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n}
$$

Let

$$
\begin{aligned}
D^{\lambda+p-1} f(z)= & \frac{z^{p}\left(z^{\lambda-1} f(z)\right)^{(\lambda+p-1)}}{(\lambda+p-1)!}, \lambda \\
& >-p
\end{aligned}
$$

Then, following Al-Amiri [1], we shall1 refer to $D^{\lambda+p-1}, f(z)$ as the $(\lambda+$ $p-1)^{\text {th }}$ order Rugcheweyh derivative of the function f. It ia easy to observe that

$$
D^{\lambda+p-1} f(z)=\frac{z^{p}}{(1-z)^{\lambda+p}} * f(z)
$$

Goel and Sohi [5] studied the class $\delta_{\lambda, p}(\beta)$ of those functions of \mathcal{A}_{p} which satisfy
$\operatorname{Re}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}\right\}>p \beta, z \in u$
where $0 \leq \beta<1$. They showed that the functions in the class $S_{\lambda, p}(\beta)$ are p-valent in u. As usual for other class of p-valent functions, β may be called the order of function in the class $\delta_{\lambda, p}(\beta)$, Aouf ([2],[3]) and Nasr and Aouf ([9], [10], [11], [12]) have introduced some classes of univalent and p-valent functions of complex order. But no one has, so far, introduced a class of functions of complex order in this direction defined by Convolution. Considering this natural problem, we now introduce a class $V_{\lambda, p, \mu}^{b}[A, B]$ as defined below:

A function of f of \mathcal{A}_{p} belongs to the class $V_{\lambda, p, \mu}^{b}[A, B]$ if and only if there exist a function $W(z)$ analytic in u and satisfying $W(o)=0$ and $|W(z)|<1$ for $z \in u$, such that

$$
\begin{align*}
p+ & \frac{1}{b}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}=p(1-\mu)+ \\
& p \mu\left[\frac{1+A W(z)}{1+B W(z)}\right], z \in u \tag{1.2}
\end{align*}
$$

where $-1 \leq B<A \leq 1,0<\mu \leq 1, \lambda>$ $-p$ and b is any non-zero complex number.

It is easy to see that the condition (1.2) is equivalent to

$$
\begin{equation*}
\left|\frac{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}-p}{z^{p-1}}}{\mu(A-B) b p-B\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}}\right|<1, z \in u . \tag{1.3}
\end{equation*}
$$

By giving specific value to λ, μ, b, A and B in (1.3), we obtain the
following subclasses studied by various researchers in earlier works:
(i) For $b=\cos \delta e^{-i \delta}$, we obtain the class of functions $f(z)$ satisfying the condition
$\left|\frac{e^{i \delta}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}}{\mu(A-B) p \cos \delta-B e^{i \delta}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}}\right|$
$<1, z \in u$.
where $\delta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, studied by Shukla and Chaudhary [13].
(ii) For $\mu=1$ and $b=1$, we obtain the class of functions $f(z)$ satisfying the condition

$$
\left|\frac{\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}}{(A-B) p-B\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}}\right|
$$

studied by Kumar and Shukla [8].
(iii) For $\mu=1, A=(1-2 \beta), B=-1$ and $b=1$, we obtain the class of functions $f(z)$ satisfying the condition (1.1), studied by Goel and Sohi [5].
(iv) For $\mu=1, b=1$ and $\lambda=1-p$, we obtain the class of functions $f(z)$ satisfying the condition

$$
\left|\frac{\frac{f^{\prime}(z)}{z^{p-1}}-p}{(A-B) p-B\left\{\frac{f^{\prime}(z)}{z^{p-1}}-p\right\}}\right|<1, z \in u
$$

studied by Chen [4].
Thus the study of the class $V_{\lambda, p, \mu}^{b}[A, B]$ provides a unified approach for the classes considered by Shukla and Chaudhary [13], Kumar and Shukla [8], Goel and Sohi [5], and Chen [4].

In the present paper, firstly, we obtain the basic inclusion relation
$V_{\lambda+1, p, \mu}^{b}[a, B] \subset V_{\lambda, p, \mu}^{b}[A, B]$.
Then we obtain coefficient estimate, sufficient condition in terms of coefficients distortion theorem and maximization of $\left|a_{p+2}-\beta a_{p+1}^{2}\right|$ over the class $V_{\lambda, p, \mu}^{b}[A, B]$. In the last, we show that the class $V_{\lambda, p, \mu}^{b}[A, B]$ is closed under "arithmetic mean".

2. PRELIMINARY LEMMAS

We state lemma 2.1 due to Jack [6], lemma 2.2 due to Keogh and Merkes [7] and prove a lemma 2.3 that are needed in section 3 .

Lemma 2.1. If the function W is analytic for $\quad|z| \leq r<1, W(o)=0 \quad$ and $\left|W\left(z_{0}\right)\right|=\max _{|z|=r}|W(z)|$, then

$$
z_{0} W^{\prime}\left(z_{0}\right)=\xi W\left(z_{0}\right)
$$

where ξ is a real number such that $\xi \geq 1$.

Lemma 2.2. Let $W(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$ be analytic with $|W(z)|<1$ in u. If d is a complex number, then

$$
\left|c_{2}-d c_{1}^{2}\right| \leq \mathrm{m} \quad\{1,|d|\} .
$$

Equality may be attained with the functions $W(z)=z^{2}, W(z)=z$.

Lemma 2.3. A function $f(z)$ of \mathcal{A}_{p} belongs to the class $V_{\lambda, p, \mu}^{b}[A, B],-1<$ $B<A \leq 1$, if and only if

$$
\begin{equation*}
\left|G_{p}(z)-m\right|<M, z \in u \tag{2.1}
\end{equation*}
$$

where
$G_{p}(z)=p+\frac{1}{b}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}-p\right\}$

$$
m=p-\frac{\mu(A-B) B p}{1-B^{2}}
$$

and

$$
M=\frac{\mu(A-B) p}{1-B^{2}} .
$$

Proof. Suppose that $f(z) \in V_{\lambda, p, \mu}^{b}[A, B]$.
Then from (1.2) we have

$$
G_{p}(z)=p\left[\frac{1+(\mu(A-B)+B) W(z)}{1+B W(z)}\right]
$$

where $G_{p}(z)$ is defined by (2.2).
Therefore

$$
\begin{gather*}
G_{p}(z)-m=\frac{(p-m)+[\{B+\mu(A-B)\} p-B m] W(z)}{1+B W(z)} \\
=M\left[\frac{B+W(z)}{1+B W(z)}\right]=M h(z) \tag{2.3}
\end{gather*}
$$

It is clear that the function $h(z)$ satisfies $|h(z)|<1$. Hence (2.1) follows from (2.3). Conversely, suppose that the inequality (2.1) holds. Then

$$
\left|\frac{G_{p}(z)}{M}-\frac{m}{M}\right|<1
$$

Let

$$
g(z)=\frac{G_{p}(z)}{M}-\frac{m}{M}
$$

and

$$
\begin{align*}
W(z) & =\frac{g(z)-g(0)}{1-g(0) g(z)} \\
& =\frac{\left\{G_{p}(z)-p\right\}}{\mu(A-B) p-B\left\{G_{p}(z)-p\right\}} \tag{2.4}
\end{align*}
$$

Clearly $W(0)=0$ and $|W(z)|<$ 1, Rearranging (2.4) we arrive at (1.3). Hence $f(z) \in V_{\lambda, p, \mu}^{b} \mu,[A, B]$
Note. The condition (2.1) can also be written as

$$
\left\lvert\, \frac{(1-B)\left(G_{p}(z)-p\right)+\mu(A-B) p}{\mu(A-B) p}\right., \quad \begin{aligned}
& \left.-\frac{1}{1+B} \right\rvert\,<\frac{1}{1+B}, z \in u .
\end{aligned}
$$

Now as $B \rightarrow-1$, the above condition reduces to

$$
\operatorname{Re}\left[G_{p}(z)\right]>\frac{1}{2}[2-\mu(1+A)] p, z \in u
$$ which is equivalent to (1.3), when $B=$ -1 . Thus including the limiting case $B \rightarrow$ -1 , the results proved with the help of above lemma will hold for $-1 \leq B<A \leq$ 1.

3. MAIN RESULTS

The proof of each of the following theorems runs parallel to that of the corresponding assertion made by Shukla and Chaudhary [13] in the special case $b=$ $\cos \delta e^{-i \delta}$, and we omit the details involved.

Theorem 3.1. Let λ_{0} be any integer such that $\lambda_{0}>\lambda$. Then

$$
V_{\lambda_{0}, p, \mu}^{b}[A, B] \subset V_{\lambda, p, \mu}^{b}[A, B] .
$$

Theorem 3.2. If $f(z)=z^{p}+$ $\sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ belongs to the class $V_{\lambda, p, \mu}^{b}[A, B]$, then
$\left|a_{p+n}\right| \leq \frac{\mu(A-B) p|b|}{(p+n) \alpha(\lambda, n)}, n=1,2, \ldots$
where
$\alpha(\lambda, n)=\left[\begin{array}{l}\lambda+p+n-1 \\ \lambda+p-1\end{array}\right]$
The inequality (3.1) is sharp.

Theorem 3.3. Let $f(z)=z^{p}+$ $\sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ be analytic in u.

$$
\begin{align*}
& \text { If } \\
& \sum_{n=1}^{\infty}(1-B) \alpha(\lambda, n)(p+n)\left|a_{p+n}\right| \leq \\
& \quad \mu(A-B) p|b|, \tag{3.3}
\end{align*}
$$

where $\alpha(\lambda, n)$ is defined by (3.2), then $f \in$ $V_{\lambda, p, \mu}^{b}[A, B]$. The inequality (3.3) is sharp. Further, the converse need not be true.

Theorem 3.4. If $f \in V_{\lambda, p, \mu}^{b}[A, B]$, then

$$
\begin{gathered}
\frac{p\left(1-B^{2} r^{2}\right)-p \mu B r^{2}(A-B) \operatorname{Re}(b)+\mu(A-B) p|b| r}{1-B^{2} r^{2}} \leq \operatorname{Re}\left\{\frac{\left(D^{\lambda+p-1} f(z)\right)^{\prime}}{z^{p-1}}\right\} \\
\leq \frac{p\left(1-B^{2} r^{2}\right)-p \mu B r^{2}(A-B) \operatorname{Re}(b)+\mu(A-B) p|b| r}{1-B^{2} r^{2}}
\end{gathered}
$$

These inequalities are sharp.

Theorem 3.5. If $f(z)=z^{p}+$ $\sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ belongs to the class $V_{\lambda, p \mu}^{b}[A, B]$, then for any complex number β, we obtain

$$
\begin{aligned}
& \left|a_{p+2}-\beta a_{p+1}^{2}\right| \\
& \leq \frac{\mu(A-B) p|b|}{\alpha(\lambda, 2)(p+2)} \mathrm{m}\{1,|d|\}
\end{aligned}
$$

where
d
$=\frac{\mu(A-B) b p \beta \alpha(\lambda, 2)(p+2)+B\{\alpha(\lambda, 1)\}^{2}(p+1)^{2}}{\{\alpha(\lambda, 1)\}^{2}(p+1)^{2}}$.
The result is sharp.

Theorem 3.6. Let c be a real number such that $c>-p$. If $f(z) \in V_{\lambda, p, \mu}^{b}[A, B]$, then the function $F(z)$ defined by

$$
F(z)=\frac{(c+p)}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t
$$

also belongs to the $V_{\lambda, p, \mu}^{b}[A, B]$.

Theorem 3.7. If the function $f(z)$ and $g(z)$ belong to $V_{\lambda, p, \mu}^{b}[A, B]$ and $0 \leq s \leq 1$, then the function $F(z)$ defined by

$$
F(z)=s f(z)+(1-s) g(z)
$$

also belongs to $V_{\lambda, p, \mu}^{b}[A, B]$.

REFERENCES

1. H. S. Al-Amiri, On Rugcheweyh derivative, Ann. Polon. Math., 38 (1980), 87-94.
2. M. K. Aouf, p-valent classes related to convex function of complex order, Rocky Mountain J. Math., 15 (1985).
3. M. K. Aouf, A generalization of starlike functions of complex order, Houston J. Math., 1985.
4. M. P. Chen, A class of p-valent analytic functions, Soochow J. Math., 8 (1982), 1526.
5. R. M. Goel and N. S. Sohi, New criteria for p-valence, Indian J. Pure Appl. Math., 11 (1980), 1356-1360.
6. S. Jack, Functions starlike and convex of order α, London Math. Soc., 3 (1971), 469-474.
7. F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. math. Soc., 20 (1969), 8-12.
8. V. Kumar and S. L. Shukla, Multivalent functions defined Ruscheweyh derivatives II, Indian J. Pure Appl. Math., (1984), 1228-1238.
9. M. A. Nasr and M. K. Aouf, On convex function of complex order, Mansoura Sci. Bull., (1982),565-585
10. M. A. Nasr and M. K. Aouf, Bounded convex function of complex order, Bull. Fac. Sci. Uni. Mangoura 10 (1983).
11. M. A. Nasr and M. K. Aouf. Bounded starlike function of complex order, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), 97-102.
12. M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natural Sci. Math., 25 (1985)
13. S. L. Shukla and A. M. Chaudhary, On a class of multivalent functions defined by Ruscheweyh derivative, Soochow J. Math., 1 (1988), 119-133.
