
September/ October 2020

ISSN: 0193-4120 Page No. 14-18

Published by: The Mattingley Publishing Co., Inc. 14

A LIGHTWEIGHT PEER TO PEER BACKUP SYSTEM FOR

MULTIMEDIA DATA

Sangita Chaudhari1, Amankumar Shrivastava2, Siddharth Raja3, Amulya Patil4

1,2,3,4 Dept. of Computer Engineering, Ramrao Adik Institute of Technology, DY Patil Deemed to be University, Navi

Mumbai, Nerul, Navi Mumbai, India.

Article Info

Volume 83

Page Number: 14-18

Publication Issue:

September/October 2020

Article History

Article Received: 4 June 2020

Revised: 18 July 2020

Accepted: 20 August 2020

Publication: 15 September 2020

Abstract
In the timeline of technological development, it will be fair to say that growth in the

advancements of technology has sparked its consumption as well. With data being

ever so more accessible, individuals consume huge amounts of data before they run

out of functional storage space on their devices. A millennial kid would not believe

the fact how commercialized Compact Discs were which offered only a few hundred

megabytes. Similarly, soon the tons of storage that we seem to be familiar with now

will be dwarfed by storage of a huge magnitude. Very soon individuals will find

themselves often running out of primary storage on their device and will need

additional space to accommodate new files without having to dump the existing

files. With the recent trends and a surge in cloud computing services, it is only

logical for data to be stored on the go on a cloud-based server. Our project aims

to solve the same problem by creating a multimedia backup system where we make

use of different technologies like Electron JS, Torrent Protocols to build a system

that performs the task of intelligent multimedia backup where the files transferred

will be deleted from the sender side to optimize storage.

1. Introduction

Data Backup owes its origin to saving

important data from physical or virtual

damage. The history of data backup starts

with magnetic tapes which existed even

before home computing was developed.

Since the backup and retrieval process on

tape was slow for business requirements, it

was replaced by the disk drives developed by

IBM. Although it was expensive it gradually

established itself as a faster, efficient, and

convenient way to back up the data. It gains

popularity as it was very convenient to store

and access data into it on personal computers.

To save the data from physical damages they

were stored in remote premises, safe in a

dedicated business center. Fast Forward

today cloud is the new and most efficient way

to backup data remotely over the internet.

The cloud is proven to extremely popular and

efficient technology to store users’ data

securely with minimal pay peruse. It

implements various algorithms and backend

processes to efficiently store, transfer, and

retrieve users’ data. There are many players

in the market like Amazon Web Services,

Google Cloud, IBM, Microsoft Azure providing

storage as a service.

Although such service providers are available, it

does not support automatic backup of the data

from users’ machine as and when required. In a

peer-to-peer system, such backup plays an

important role at the time of node crashes. We

aim to create a Device-to-Device backup system

enabling users to store data on multiple devices.

Besides, our system will provide an Automatic

Deletion service that enables the user to delete

after sending or uploading files. Often, we

document files that might not be particularly

useful sometime later thus eating up a significant

amount of storage over time. A trivial example

can be that every person has lots of images as

memories, which are rarely viewed after a certain

period of time. Now understand that in this kind

of situation, the pictures occupy a huge chunk of

memory and are rarely used. So, we planned

accordingly to use secondary device storage to

store this chunk of data with the secure

transmission. Moreover, the product allows the

user to retrieve the data once sent to the

secondary device without requesting the receiver

end. The product proposes a smart deletion

September/ October 2020

ISSN: 0193-4120 Page No. 14-18

Published by: The Mattingley Publishing Co., Inc. 15

system from the sender’s device once data

has been received by the receiver, the signal

is sent to initiate a timer that automatically

deletes files from the sender’s system storage.

2 LITERATURE SURVEY

There are different ways in which backup and

retrieval of real-time data can be done. Tilkov

and Vinoski have proposed a solution to

establish an asynchronous and high-

performance network between peers for data

sharing. It was observed that the system

supports multiple browsers with a key focus

on lesser memory consumption [1].

Pramukantoro et al. depict an interesting

approach towards middleware in messaging

systems. In IoT, multiple requests are made

every second which eventually gave birth to

a scalable middleware by designing a Cluster

of Redis by implementing multiple protocols

like COAP, MQTT. Once a server cluster is

created, the transaction between the

subscriber and its client was synchronized.

[2]. Saini et al. illustrate the analysis of

different computing and encryption

approaches highlighting their space and time

complexities apart from their compatibility

with other components of the system. They

have also studied major cloud computing

players such as IBM, AWS, and Adobe and

their performance for the storage of data [3].

Leang et al. proposed an integrated system of

Apache KAFKA and spark Cluster for real-

time data streaming and processing.

Although it results in high-performance

streaming but results in complex hardware

requirements [4]. Gopal et al. suggested how

the system load can be decreased by caching

data objects from heavily loaded peers to

other peers. It always maintains a threshold

availability of data and enables dynamically

sharing of files by calculating load at each

node. [5]

While the existing systems do solve the

problem of security, encryption, and efficient

data transfer idiosyncratically, there are not

many solutions that are robust in all the

departments. Systems end up compromising

on either extensibility or ease of use while

building the approaches.

Most of the traditional multimedia backup

systems work on the Client-Server model

with specific servers and specific clients

connected to the server. There is a client request

for a service and the server responds with the

service. The data is stored in the desired server.

When several clients request services

simultaneously, a server can get bottlenecked.

The client-server is expensive to implement.

These systems are less distributed in nature,

moreover, real-time sharing of data is a point of

concern for such systems.

3 PROPOSED SYSTEM

The system has been brought to function by using

socket programming where the sender and the

backup device are brought together in a secure

and private channel where the eventual transfer

of files will take place. The data produced on the

sender's side is encrypted using standard

Encryption Algorithms and then this data is

shared using the torrent protocol. The torrent

magnet link associated with the file is

communicated to the backup device, wherein an

automated function is triggered to download and

store this file on the backup device. The second

part of the system suggests a way of retrieving

data from the backup device to the primary

device. When the primary device requests the

server for the file it is sent to the backup device

with a specific filename, the cloud server request

the backup device it is mapped to for the data it

earlier received. Thus, the located file is traced

back to the primary device. The data verification

for every packet received by the backup device is

done using Torrent Protocol which stores

message digest(hash) using SHA- 256 which

poses a compatibility challenge with the DHT

and trackers, which have protocols that expect

20-byte hashes. To handle this, DHT- and tracker

announcements and lookups for v2 torrents use

the SHA-256 info-hash truncated to 20 bytes.

Traditional file-sharing systems do not share data

in chunks, they are solely dependent on a

centralized server where data is being served

through REST endpoints using HTTP/HTTPS

protocols. This system proposes a decentralized

file-sharing mechanism using Web-Torrent APIs.

Web Torrent is a streaming torrent client for the

web browser and the desktop. Web Torrent is

written completely in JavaScript – the language

of the web – and uses WebRTC for peer-to-peer

transport whenever possible. No browser plugins,

extensions, or installation is required to use Web

September/ October 2020

ISSN: 0193-4120 Page No. 14-18

Published by: The Mattingley Publishing Co., Inc. 16

Torrent in your browser. The system is built

on Electron.js which provides a headless

Chromium browser to create a desktop client

for file sharing/file backup. Currently, the

system has Windows OS build associated

with the client-side. Figure 3.1 shows the

authentication and authorization system.

Users are required to register themselves on

our system with an email id and post

successful verification they can begin their

tasks, JWT tokens are used to verify the user

credentials from the back end to maintain

integrity as depicted in the figure above.

Figure 3.1: Authentication & Authorization

Figure 3.2 depicts the scenario of creating a

grouping of nodes participating in the backup

process. Users on participating nodes can

create their own private rooms and can add

other registered members to their room by

sending them an invitation through mail. All

the users in a room are connected to each

other through a web-torrent protocol which

enables the transfer of files between all the

members where users are connected in a

socket program. Figures 3.3 shows a fully

connected network between all such

participating nodes which enables efficient

file transfer for backup and retrieval of the

multimedia data over peers.

Figure 3.2: Room Creation & Invitation

Figure 3.3: File Transfer in a Private Room

Figure 3.4 illustrates the retrieval of the backup

files. For retrieval, the sender initiates a request

to be sent to the express server. The express

server informs the backup device about the same.

It will be retrieved directly if its Magnet URL is

already present in the cache otherwise it will be

retrieved from the database. Torrent tracking has

logs through which it sends the file back to the

sender.

3.1 Backup Mechanism

Today in the modern era of the twenty-first

century, the latest advancements in technology

have empowered the user to produce data in bulk

that does not fit in the local storage of the device

they carry. People today produce tonnes of data

over different web platforms/social media and

even locally in their machines. Cloud Solutions

today provide users extreme power to store,

September/ October 2020

ISSN: 0193-4120 Page No. 14-18

Published by: The Mattingley Publishing Co., Inc. 17

fetch, process and manipulate data in less

time and efficiently. But these Cloud

technologies do not provide an open source

proposed system/methodology of how they

tend to store data in the required format.

Thus, this report proposes a system of

Backing-up Data from one device to the

other, to minimize dependency of Cloud-

usage.

Figure 3.4: Data Retrieval Process

Figure 3.5 shows the detailed process of

backup and retrieval of the data. It consists of

the following steps:

1) Users acting as primary, or backup

devices can register and login themselves.

Proper emailing service is implemented for

scenarios such as Forgot Password,

Registration Success / Failure, and Invitation

Mails for users to join private rooms.

2) Registered users can create a room

where creators can invite any other user via

their email-ids.

3) Once the socket program is created

between the users connected in a room, the

connected users can upload files that are sent

to the Web-Torrent Third Party Package.

4) Magnet URL received on the sender side

is broadcasted to other members in the group

via socket program. The sender in this case

acts as a seeder.

5) The shared Magnet URL is received by

other members, and they start downloading

files over their system after reading the file in

a chunked buffered format.

6) Logs are maintained in both sender and

receiver ends consisting of the filename,

timestamp, and sender email id. To retrieve a

file these logs are read on the sender's side

and a retrieve button is shown.

7) Sender can click that button and pull the file

from the other device by sending the file name

shared by him earlier in the group.

8) The reverse process of sharing the file then

occurs from the receiver's end to the sender's end

via Web- Torrent using magnet URL.

9) Caching for the least recently used data for

Room Mapping, User mapping, and User-Room

mapping is done in Redis DB which provides

numerous in memory data structures to store the

data efficiently in the server end which can be

read efficiently.

Figure 3.5: Backup and Retrieval Process

4 RESULTS AND DISCUSSION

This proposed system basically aims to build a

decentralized multimedia backup system using

Torrent protocol. The torrent protocol allows one to

establish a peer-to-peer network between sender and

receiver devices. The issue with the implementation

of the naive torrent protocol is that it cannot be

accessed over the web. This issue is resolved by Web-

Torrent third-party package which develops a

streaming torrent over the web. It uses WebRTC for

peer-to-peer transport whenever possible. No browser

plugins, extensions, or installation is required to use

Web Torrent in your browser.

This system primarily focuses on bringing sender and

receiver devices (acting as primary and backup

devices) to connect over a common network and share

September/ October 2020

ISSN: 0193-4120 Page No. 14-18

Published by: The Mattingley Publishing Co., Inc. 18

or backup files using Web-Torrent. Once the user

registered successfully on the service, he could

make his own server rooms and add members to

it. The upload button enables the user to send any

file across the server to its members. The server

log on the backup device shows the successful

automated download of the files. The

robustness of the system is demonstrated by the

successful transfer of different types of files like

.pdf, .png, .jpeg, .txt, .mp4, etc which can be seen

in Table 4.1 Our system has no restrictions

whatsoever when it comes to the file type and its

size.

Table 4.1: File Transfer Statistics

File Size File Type Transfer Time

5MB TXT 33s

10MB PDF 54s

50MB MP4 79s

100MB BINARY 149s

250MB EXE 308s

500MB EXE 787s

5 CONCLUSIONS

Backup of the data and its retrieval is the crucial

process in the peer-to-peer network while dealing

with fault handling and its recovery process. A

simple, yet a lightweight mechanism to deal with

such a situation is needed to achieve a higher

response time. Integrating the front end on the

wheels of Electron JS and the NodeJS powered

back end, we created a file-sharing system that

uses the torrent protocol and socket programming

to enable smooth multimedia transfers. The

performance indices will be much higher in an

ecosystem where advanced hardware and

computing tools are easily accessible. Our system

will need to undergo testing with extensive load

before it can be really trusted for an enterprise or

commercial release.

References

[1]. Tilkov, Stefan, and Steve Vinoski. "Node. js:

Using JavaScript to build high-performance

network programs." IEEE Internet Computing

14.6 (2010):

80-83.

[2]. Pramukantoro, Eko Sakti, et al. "A cluster

message broker in IoT middleware using Ioredis."

2018 International Conference on Sustainable

Information Engineering and Technology (SIET).

IEEE, 2018.

[3]. Saini, Kavita, et al. "E2EE For Data Security For

Hybrid Cloud Services: A Novel Approach." 2018

International Conference on Advances in Computing,

Communication Control and Networking

(ICACCCN). IEEE, 2018.

[4]. Leang, Bunrong, Rock-Won Kim, and Kwan-Hee

Yoo. "Real-time transmission of secured plcs sensing

data." 2018 IEEE International Conference on

Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom) and

IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData). IEEE,

2018.

[5]. Gopal, S. Venu, N. Sambasiva Rao, and SK

Lokesh Naik. "Dynamic sharing of files from

disconnected nodes in peer-to-peer systems." 2016

International Conference on Electrical, Electronics,

and Optimization Techniques (ICEEOT). IEEE,

2016.

