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Abstract 

The modified Cam-Clay model is a widely used constitutive model of soft clay in 

geotechnical engineering. It can describe the behaviors of soft clay well. 

Therefore, this model is used in many numerical analyses to get better results. 

However, many derivations of the integration of the elastoplasticstress are in the 

pʹ-q plane which geotechnical engineers are familiar with. In this paper, the closes 

point projection method is used for integrating the stress of the modified Cam-

Clay model. In addition, the plasticity of the model and the equations used in the 

closest point projection method are deriveddetailedlyunderthe Cartesian 

coordinate space. Subsequently, a UMAT subroutine of ABAQUS is developed 

using FORTRAN. Finally, a triaxial test under drainage consolidation with three 

consolidation states is calculated using the analytical equations, the ABAQUS 

built-in model, and the UMAT model respectively for verifications. Results show 

that the proposed method is feasible and stable, and all three types of results using 

different methods are the same, it is proved that the UMAT model is accurate 

enough for analyses. 

Keywords:modified Cam-Clay Model, closest point projection method, finite 

element method, soft clay, ABAQUS. 

 

I. Introduction 

The soft clay exists in the real world extensively, 

and it has many particular features that are absent in 

many types of soils. Hence, many soil models 

cannot be used to represent the behaviors of the soft 

clay, and corresponding calculation methods cannot 

solve the settlement of the soft soil. In the past 

decades, many engineers and scholars are dedicated 

to improving the calculation of soft clay. 

During the period from 1958 to 1963, Roscoe [1,2] 

and his colleagues proposed the Cam-Clay model 

based on a large number of triaxial tests of 

saturated clay at Cambridge University. The model 

adopts the cap yield surface and the associated flow 

criterion and takes the plastic volume strain as the 

hardening parameter. In addition, this model 

theoretically explains the elastoplastic deformation 

characteristics of soft clay. It greatly accelerates the 

development of the constitutive model of soft soil. 

Many finite element software in geotechnical 

engineering have used this model. However, 

experiments have shown that when the shear stress 

is small, the calculated value of the shear strain 

given by the Cam-Clay model is larger. To tackle 

the problem, Burland[3] used a new incremental 

plastic energy formula to modify the model and get 

the modified Cam-Clay model. 

After that, the modified Cam-Clay model is broadly 

used in engineering projects, such as the tunnel 

construction built on soft ground [4], the pile 

installation [5], and the analysis of instability [6]. 

Especially, analyses of the deep excavations [7-10] 

and projects built on clay [9,11,12] use the model 

widely.However, the analytical solution of the 

modified Cam-Clay model is too hard to be applied 

to many situations. Therefore, its numerical 



 

         July-August 2020 
   ISSN: 0193-4120 Page No. 4507 - 4515 

September-October 2020 
ISSN: 0193-4120 Page No. 01 - 09 

 
 

4508 Published by:  The Mattingley Publishing Co., Inc. 

solution, for example, the finite element solution, 

are also researched extensively. From the aspects of 

implementations [13-20] to the extensions of the 

original model [13,21,22], the modified Cam-Clay 

model is improved heavily in the past. 

Nevertheless, many implementations are based on 

the triaxial stress space [14,18-20,23,24], the 

considerations of stress statuses in the Cartesian 

coordinate system are lack. This paper gives the 

derivations of integration using the closest point 

projection method and implements the finite 

element subroutines of the modified Cam-Clay 

model in ABAQUS. Finally, examples are 

conducted for verifying the feasibility, stability,and 

accuracy. 

 

II. METHODOLOGY 

Yield function of themodel 

Roscoe firstly proposed the yield equation of the 

Cam-Clay model as shown in Equation(1), it is the 

most important formula of the Cam-Clay model. 

 ln 0cpq
f M

p p


  

 
 (1) 

wheref is the yield function, q is the generalized 

shear stress, pʹ is the effective mean principal stress, 

pcʹ is the effective pre-consolidation pressure, M is 

the failure stress ratio. 

Burland used the incremental plastic energy 

equation to modify the Cam-Clay model: 

    
2 2

p p p

V SdW p d d    (2) 

where
pW is the plastic energy, p

V is the plastic bulk 

strain, e

V is the elastic bulk strain. 

Therefore, the modified Cam-Clay model is derived 

as: 

 

22

2 2

c cp pq
p

M

     
       

    
 (3) 

It can be seen that the yield surface is an ellipse on 

the pʹ-q plane, and the top point is in the line that is 

expressed by q=Mpʹ as shown in Figure 1. 

 

Fig. 1The yield surface of the modified Cam-

Clay model on the pʹ-q plane 

Plasticity of the model 

In the Cartesian coordinate system, the effective 

mean principal stress and the generalized shear 

stress can be expressed as: 
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 

 (4) 

where x  , y  , and z  arenormal stresses, xy , yz , 

and zx  are shear stresses. 

The elastic bulk modulus of the modified Cam-Clay 

model K is stress-dependent, it can be calculated 

using the Equation (5). 

 
1 e

K p



  (5) 

wheree is the void ratio, κ is the slope of the 

rebound curve. 

Hence, the three-dimensional elastic stiffness 

matrix with the assumption of isotropic material is: 
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 (6) 

where the μ is the poisson’s ratio. 

In the associated flow criterion, the flow vector is 

the partial derivative of the yield function with 

respect to the stress vector. Therefore, according to 

the Equations (3) and (4), the flow vector can be 

derived. 
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r  (7) 

wherer is the flow vector. 

And the equivalent plastic hardening modulus of 

the modified Cam-Clay model is: 

  
1

2c c

e
A p p p p

 


    


 (8) 

whereA is the plastic hardening modulus, λ is the 

slope of the compression curve. 

Closest Point Projection Method 

The closest point project method is a stable and 

effective method during the integration of 

elastoplastic stress [25]. Its main algorithmsare the 

elastic prediction, plastic modification, and 

backward Euler implicit integration. For a time 

increment  1n nt t t   , the stress vector 
nσ , the 

yield stress n

cp , the void ratio 
ne , and the strain 

increment ε  are known, and the integration 

process is: 

(1) Elastic prediction 

The stress is considered as elastic in this step, so the 

elastic trial stress vector is: 

 tr e

n
   σ σ D ε  (9) 

Where 
trσ  is the effective elastic trial stress vector, 

n
σ  is the effective stress vector, e

D  is the elastic 

stiffness matrix as expressed by Equation (6). 

Assume that the bulk modulus K can get better 

results, then: 

 1n n n Vp p p p K 
         (10) 

When the time increment is small, Equation (11) 

can be derived. 

 1

1
exp n

n n V

e
p p 




 
   

 
 (11) 

Therefore, Equation (12) can be get with the 

combination of Equations (10) and (11). 

 
1

exp 1n n
V

V

p e
K 

 

    
    
   

 (12) 

(2) Judgment of yielding 

According to the elastic trial stress vector, the trial 

stresses can be calculated, and the value of the yield 

function also can be calculated: if the value is not 

greater than 0, the elastic status is kept, then the 

integration of stress is finished; otherwise, 

theintegration of elastoplastic stress should be 

executed in the next step. 
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(3) Integration of elastoplastic stress 

In this step, the elastic trial stress would be 

iteratively improved. The iterations adopt the 

backward Euler implicit integration that does not 

need to solve the intersections between the stress 

path and the yield surface. 

According to the theory of the modified Cam-Clay 

model, equations for the backward Euler implicit 

integration can be described as: 
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



 (13) 

Between two iterative steps, the bulk modulus is 

calculated using the θ method as expressed in 

Equation (14). 
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Therefore, the residuals of the integration equations 

are: 
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 (15) 

Where Λ is the plastic factor. 

The residuals listed in Equation (15) should be 

eliminated to find the increments for the next 

iterative step.Finally, the system equationsare: 

 

c
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 (16) 

Where  σ ,
cp  , are the iterative corrections, A, 

B, F, H and E are coefficient matrices, β, ω, γ are 

system coefficients. 

The coefficients in equation (16) is the partial 

derivative of the residual value with respect to the 

correction variable. Solving equation (16) can get 

iterative corrections. After updating, it is judged 

whether the solving process has converged. If not, 

the integration of plastic stress should be repeated 

using the updated values until the convergence is 

reached. The criteria for iterative convergence can 

be as follows: 
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R σ

 (17) 

Where err and TOL indicates relative errors and 

tolerance respectively, k is the number of iterations. 

In order to make the iteration more efficient, the 

initial value of plastic factor Λ can be calculated by 

the following equation: 

 

 

tr

T
tr e tr tr

f

A
 

r D r
 (18) 

At the end of the plastic stress integration, the 

elastoplastic stiffness matrix of the elastoplastic 

incremental constitutive relationship needs to be 

calculated [26]: 

 
e T e

ep e

TA
 



D rr D
D D

r Dr
 (19) 

Implementation 

Based on the detailed theory in previous sections, a 

material constitutive subroutine embedded in 

ABAQUS is developed using FORTRAN.  

III. VERIFICATION 

The triaxial compression test is commonly used to 

determine the calculation parameters of the soil and 

reveal the characteristics of the soil. The triaxial 

compression test is simulatedin this section to 
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verify the feasibility, stability, and accuracy of the 

UMAT subroutine model in ABAQUS, at the same 

time the featuresof the modified Cam-Clay model is 

revealed. 

Model paramters 

Figure 2 shows a cube with a side length of 1m. 

The S1 surface is constrained in the X direction, the 

S2 surface is constrained in the Y direction, and the 

S3 surface is constrained in the Z direction. For the 

triaxial test with stability after pre-consolidated, the 

same confining pressureis applied on the S4, S5, 

and S6 surfaces. Hence, the initial stress state of the 

soil is confirmed, and the initial consolidation state 

of the soil can be determined.Subsequently, the 

confining pressure is unchanged, so that the surface 

forces on the S4 and S5 surfacesremain unchanged, 

and thenthe externalpressure is applied on the S6 

surface until the soil is broken. 

In the calculation process, the compression process 

can be controlled by stress or displacement. 

Considering that the displacement control is more 

flexible, this simulation adopts the displacement 

control method. It means that the negative 

displacement is applied on the S6 surface in the Z 

direction, and the maximum axial strain reaches 40% 

in this test. 

 

Fig. 2The model of the triaxial test 

In this simulation, three initial consolidation states 

are considered: normal consolidation (OCR=1), 

weak overconsolidation (OCR=2) and heavy 

overconsolidation (OCR=5). Thecalculation 

parameters are listed in Table 1. In addition, only 

the drainage consolidation case is considered for 

the verification. 

Table 1 Calculation parameters of the triaxial 

test 

 OCR=1 OCR=2 OCR=5 

Initial cofining 

pressure(kPa) 
200 400 100 

Initial yield 

stress(kPa) 
200 

λ 0.066 

κ 0.0077 

M 1.2 

e0 1.0 

μ 0.3 

 

Simulation of drainage consolidation 

In the drainage consolidation test, the drainage is 

carried out during the compression process. It can 

be considered that the pore pressure is 0 during the 

compression process, that is, the effective stress is 

equal to the total stress. According to the Equation 

(4), it can be seen that the stress path of the 

drainage consolidation on the pʹ-qplane is a straight 

line and the slope isk=Δq/Δpʹ=3. 

For the case where the slope of the stress pathk is 

constant, DunjaPerić [27] has derived the analytical 

solution of the strain under the drainage 

consolidation. Considering a time increment step

 1n nt t t   , pʹ and q at nt and 1nt  are known, and 

the void ratio ne at the beginning of the increment 

step is given, the analytical solution of the elastic 

strain increment is: 

  
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 (20) 

Where η=q/pʹ.  

The plastic strain increment under the elastoplastic 

status is: 
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 (21) 

At the end of the increment step, the increments of 

axial strain, radial strain, and void ratio are: 
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Besides the analytical solution using DunjaPerić’s 

equations, numerical calculations the ABAQUS 

built-in model and developed UMAT model in this 

research were carried out at the same time. 

Results and discussions 

According to the calculated results, the 

relationshipsof a q  and a V  are shown in 

Figure 3, and the stress path in thepʹ-q plane is 

shown in Figure 4. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3 a q  and a V  curves of the triaxial 

compression drainage consolidation test 
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Fig. 4pʹ-q curves of the triaxial compression 

drainage consolidation test 

It can be seen from Figure 3 that the results 

calculated by the UMAT model are correct and 

stable. Results from the UMAT model, the 

ABAQUS built-in model, and the analytical 

equations are almost the same. At the same time, it 

can be seen that the relationship between the stress 

and the strain is linear when the soil is over-

consolidated, whereasit is nonlinear when the soil is 

elastoplastic. From the (c) in Figure 3, the heavy 

overconsolidated soil exhibits an obvious softening 

phenomenonwhen it iselastoplastic, while it shows 

hardening law when it is normal consolidated or 

weak over-consolidated in (a) and (b). According to 

the a V  curve in Figure 3, the volumetric strain 

increases during the elastic phase when it is 

triaxially compressed.However, when the soil is in 

the plastic phase, the volumetric strain of soils 

under normal consolidationor the weak 

overconsolidationincrease (shear shrinkage), 

whereas it decreases when soils are under heavy 

overconsolidated soilsand havea negative 

volumetric strain (shear dilatancy). In Figure 4, 

results illustrate that the stress path of drainage 

consolidation is a straight line with a slope of 3, the 

numerical calculation results are consistent with the 

theory. 

 

It can be seen from Figure 4 that a lot of data points 

are gathered at three points A, B, and C. In fact, this 

means that the stresses after failure are on the 

critical state line on the pʹ-q surface. The stress 

status when the failure occurs can be obtained, as 

listed in Table 2. As Figure 3 shown, the shear 

stress q and volumetric strain
V  after failure are 

unchanged, and at the same time, it can be seen that 

as the ratios of overconsolidation increase, the axial 

strain at failure in consolidation drainage decreases. 

Table 2Stress and strain at the initial failure of 

the triaxial compression drainage consolidation 

 OCR=1 OCR=2 OCR=5 

pʹ (kPa) 333.33 166.67 66.67 

q(kPa) 400 200 80 

a (%) 29.4 23.2 18.6 

V (%) 3.77 1.70 -0.98 

 

IV. CONCLUSION 

The integration equations of the elastoplastic stress 

of the modified Cam-Clay model under the 

Cartesian coordinate space using the closest point 

projection method were derived in this paper, and 

the UMAT subroutine of this model in ABAQUS 

was developed using FORTRAN. Finally, the 

triaxial compression tests under drainage 

consolidation are conducted for verifications. From 

the calculated results, three main conclusions are 

summarized as follows: 

(1) The modified Cam-Clay model can describe the 

behaviors of the soft clay well. It is better to choose 

the modified Cam-Clay model for analyses of 

projects built-on soft ground. 

(2) The closest point projection method is a proper 

method for the integration of the elastoplastic stress 

in the modified Cam-Clay model. Numerical 

experiments show that it is feasible and stable. 

(3) All the equations derived in this paper are in the 

Cartesian coordinate system, therefore they fit real 



 

         July-August 2020 
   ISSN: 0193-4120 Page No. 4507 - 4515 

September-October 2020 
ISSN: 0193-4120 Page No. 01 - 09 

 
 

4514 Published by:  The Mattingley Publishing Co., Inc. 

three dimensional cases. Verification results 

indicate that the equations are accurate enough. 
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