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Abstract 

Millimeter wave (mm-Wave) is emerging as one of the predominant 5G technology at 

high frequency. In this paper the channel estimation at mm-Wave is formulated as a 

sparse problem in which the hybrid multiple- input multiple-output (MIMO) precoders 

and combiners are used as the measurement matrices. The hybrid MIMO system 

judiciously partitions mm-Wave precoding-combining between analog and digital 

domain, due to high power consumption and cost of mixed signal devices. Exploiting 

the sparsity of mm-Wave channels, a (Compressed sensing) CS problem is formulated 

that estimates the angle of departure/arrival and gain of each corresponding path. Mm-

Waves employs the directional beam forming which divides the angle of arrival and the 

angle of departure space intogrids. A dictionary is created where all the possible angles 

of arrivals of the received array response vectors corresponding to a particular resolution 

are placed. Given the RF beamforming matrix using discrete fourier transform (DFT 

matrix), baseband precoder-combiner matrix (assumed to be unitary), the orthogonal 

matching pursuit (OMP) algorithm, ORACLE-LS estimator performance is compared in 

terms of normalized mean square error (NMSE) on a virtual channel model in mm-

Wave hybrid MIMO system. The MATLAB simulation results shows the advantage of 

low complexity OMP estimator which evaluates NMSE using fewer samples compared 

to ORACLE-LS estimator which requires full training samples, and it’s estimation error 

has shown to approach Cramer Rao lower bound. 

Keywords: mm- Wave, sparse channel estimation, Hybrid MIMO, Compressed sensing, 

ORACLE-LS estimator, Orthogonal Matching Pursuit. 

 

I. INTRODUCTION 

Of Late the upcoming wireless systems has 

been empowered by a present day technology 

known as millimeter wave (mm-Wave). The mm-

Wave has been around and is as old as wireless 

itself (Bose in India 1895 and Lebedew in Russia) 

[1]. The MIMO communication at mm-Waves is a 

promising technology and a strong contender for 

next generation wireless communications [2]. The 

Technology advances make mm-Waves possible 

for low cost consumer devices. Mm-Wave is 

coming to us in huge volumes in HDTV, Wireless 

LAN etc. 

The sparsity of mm-Wave channels is due to the 

fact that the impulse response is dominant by a 

few non-zero (significant) paths which are fewer 

than number of transmitting/receiving antennas 

[3]. Due to its sparse nature, a hybrid MIMO 

system with digital baseband precoding along 

with analog beamforming in radio frequency (RF) 

domain has been proposed for mm-Wave 

communications [4]-[6]. In Hybrid MIMO 

systems, the no. of RF chains depends on the rank 

of the channel matrix (which is a low rank matrix) 

and it’s implementation will be simpler than 

conventional systems of MIMO which require RF 
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chain per individual antenna and it will be a full 

rank channel matrix. To efficiently design a mm-

Wave hybrid MIMO system, it is an extremely 

challenging task to estimate channel state 

information (CSI) in mm-Wave systems, unlike 

conventional MIMO systems. The main reason for 

difficulty in estimation of CSI is that the SNR is 

low before the transmit beamforming and there 

are large no. of antennas. To boost the SNR, 

instead of estimating all the channel coefficients 

of the channel matrix, the angle of 

departure/arrival of the dominant paths are 

estimated along with their corresponding channel 

path gains. The mm-wave signals are susceptible 

to blockages from buildings,rain and high 

atmospheric attenuation, hence intelligent beam 

forming techniques are needed to overcome it. 

In a closed loop beam training method to 

estimate CSI in mm-Wave, beam departure/arrival 

angles are first estimated and also the gain of each 

path associated with each angle pair are 

determined. The closed loop training process 

which is a multiple-stage procedure avoids an 

exhaustive beam searching method. In this closed 

loop method the transmitter (Tx) emits the pilot 

beam and receiver (Rx) feedback it’s decision by 

selecting the best beam. This method has been 

adopted in many systems practically [7],[8] but 

the drawback of this method is that it’s 

performance tends to be restricted by the beam 

training patterns, and also the training overhead 

linearly increases with increase in no. of users. 

An alternate effective approach for sparse 

estimation of MIMO channels in mm-Wave is by 

estimating angle of departure /arrival by using the 

technology called Compressed sensing (CS)[9]-

[11]. In mm-Wave Hybrid MIMO systems, the RF 

beam formers that are employed yields the 

directional beams which are correlated with other 

beams, resulting in increase in SNR of the system. 

As in conventional CS, the use of i.i.d random 

pilot vectors is difficult in mm-Wave system.  

In this paper, channel estimation in mm-Wave 

hybrid MIMO systems-a sparse way is presented 

using the CS approach based on OMP algorithm 

and compare its performance with Least squares 

and ORACLE estimator. OMP was initially 

proposed for channel estimation of multi carrier 

under water acoustics [12]. 

The organization of the paper is as follows: In 

Section IIthe mm-Wave Hybrid MIMO system 

Model is described, Section III holds the Channel 

estimation formulation using  

LS and ORACLE Estimator, Section IV describes 

the CS based mm-Wave Hybrid MIMO Sparse 

Channel Estimation using grid based OMP and in 

Section V the simulation results using MATLAB 

is presented showing the advantage of the 

proposed algorithm. Last Section VI holds the 

conclusion with future work. 

Notations:  

Lower case x represent a vector while the upper 

case X represents a matrix. The given superscripts 

XT , X∗, X−1, XHdenotes the transpose, the 

conjugate, the inverse, the Hermitian (conjugate-

transpose) of the matrix X respectively. 

II. MM-WAVE HYBRID MIMO SYSTEM 

MODEL 

Consider a mm-Wave system as shown in Fig.1 

which consists of a Tx with the number of 

transmitting antennas (NTX
) communicating 

Nsdata steams to a Rx with receiving 

antennas(NRX
)[2]. Hybrid Analog to Digital 

precoding and combining architecture is one novel 

approach that judiciously partitions the MIMO 

signal processing and communications between 

the analog and digital domains in mm-wave 

system, it’s a low complexity implementation of 

MIMO in mm-wave systems.  

The incoming data stream consist of number of 

symbols Ns  which are transmitted by employing a 

small number of RF chains Lt /Lr  at the Tx/Rx 

such that Ns < Lt < NTX
 and NRX

> Lr >

Ns[4],[15]. Consider the downlink transmission 

from base station to mobile station,assuming that 

the base station applies an baseband precoderFB  ϵ 

₵
Lt  X Ns  followed by an RF precoderFRϵ ₵

NTX
 X Lt . 

If F = FBFR  is NTX
 X Ns  matrix, which is a 
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combination of precoding matrices at the base 

station, the signal is transmitted from the base 

station through a virtual channel. 

 The implementation of RF precoding / 

combining can be done by using multiple 

approaches in analog domain such as phase 

shifters [13], switches/ lenses [14]. Assume that 

the channel state information (CSI) is known at 

both Tx and Rx, and the RF precoderFR  is 

implemented by using analog phase shifter.

  

 

Fig.1: Block diagram of MM-wave MIMO system using Hybrid beamforming 

 

 A virtual channel model is adopted where the 

received signal vector  r  observed by the mobile 

station is given by equation (1) as 

r = Hn Fs +

n………………………………………….(1) 

Where Hn =NRX
X NTX

 is the Channel matrix of 

the mm-Wave channel,  

n~𝒩(0, ς2I)is the Gaussian noise in the 

channel, 

F = FB FRis the combination of baseband and 

RF precoder at basestation and s is the transmitted 

symbol in Nsdata steam. 

At the Rx (mobile station), the combiner 

W=WR WBconsists of the RF and the baseband 

combiner which processes the received signal r 

and results in (2) 

Y = WH Hn Fs +

WH n………………………………....(2) 

The received signal at the mobile station can be 

given in matrix form  Y  as (3) 

Y =  ρ WB
H WR

H Hn FBFR +

N ……………………..(3) 

and the transmitted pilot matrix is  ρI,  where ρ 

is the average power per symboltransmission. 

The mm-Waves frequency response can be 

approximately expressed as equation (4) as given 

in [2] 

H f =

 αl
Np

l=1
bR θR

l , ∅R
l  bT

∗  θT
l , ∅T

l  ………………..(4) 

Where Np=No. of multipath components 

bR θR
l , ∅R

l  , bT
∗  θT

l , ∅T
l  are the beam steering 

vectors are at the Rx/Tx 

Θ is the Azimuth angle 

Ø is the Elevation angle 

 αl  ,Complex channel gain  

 θR
l , ∅R

l  ,  θT
l , ∅T

l  are the pair of angles of 

arrival/ departure.  

The mm-wave Channel model [15] can be 

further described as follows in equation (5),(6) by 

considering only azimuth angle θi.e all the 

scattering is w.r.t horizontal beamforming only 

and neglecting the elevation angle Ø 

Hn =

 
NTX

NRX

L
 αlbR θR

l  bT
H θT

l  L
l=1 …….………...(5) 
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Hn =

 
NTX

NRX

L
[bR θR

1  bR θR
2  … bR θR

L  ]x

 
α1 … . 0
: : :
0 … . . αL

 

 
 
 
 
 
 
 
bT

H θT
1  

bT
H θT

2 
:
:
:
:

bT
H θT

L   
 
 
 
 
 
 

………..…….....(6) 

Where Hn is a sparse combination of basis 

directional array vectors= bR θR
l  , bT

H θT
l  at the 

Rx/Tx 

L =  No. of scatterers< minimum(NTX
, NRX

)  

The Matrix Hn  can be expressed in vector form 

asin (7) 

Hn =

BR  H  BT
H ………………………………………..(7

) 

whereH is a L –sparse matrix , 

BR  , BTare the beam steering vectors. 

 The beam steering directional Cosine Vectors 

at the Rx and Tx is given by (8)  

bR θl
r =

1

 NR X

 
 
 
 
 

1

e−j
2π
λ

dr Cos θ1
r

:
:

e−j
2π
λ
 Nr−1 dr Cos θ l

r
 
 
 
 
 

; 

bT θl
t =

1

 NT X

 
 
 
 
 

1

e−j
2π
λ

dt Cos θ1
t

:
:

e−j
2π
λ

(Nt−1)dt Cos θ l
t
 
 
 
 
 

…………………...(8) 

In Vector form, the above equation (8) can be 

expressed as (9) 

vec Hn =

  
 BT

∗ ⊗ BR . vec(H)
 BT

∗ ⊙ BR . vecd(H)
  ………………….. (9) 

Where the 1
st
 quantity is vector identity (10) 

vec αβγ = (γT ⊗

α).vec β ……………………...(10) 

And the 2
nd

 equality holds as H as a diagonal 

matrix and   BT
∗ ⊙

BR ϵ ₵NTXNRXX 

L………………………………..(11) 

Where the Symbol ⊗ represents the Kronecker 

product and ⊙ denotes Khatri-Rao product. 

The column wise matching Kronecker product 

is the KhatriRao product given by (12) 

A⊙B = [a1⊗b1 a2⊗b2 a3⊗b3….. 

an⊗bn]……...……(12) 

III. CHANNELESTIMATION 

FORMULATION USING LS AND ORACLE 

ESTIMATOR 

In order to formulate the problem of channel 

estimation, the received signal Y is written in 

vector form denoted by (13) 

y =  ρ FB
TFR

T ⊗ WB
H WR

H . vec Hn +

vec(N )…(13) 

Where ρ represents the average power 

transmitted per symbol, Q represents a sensing 

matrix in (14) 

Q =  FB
TFR

T ⊗

WBHWRH………………………....(14) 

An straightforward approach to LS estimate is 

given by equation (15) 

 vec(HLS ) 

=
1

 ρ
(QH Q)−1QH y…………………….…(15) 

But (QH Q) sensing matrix has a full rank and 

estimation problem has large dimensions 

(NTX
NRX

), therefore LS estimate is suitable for 

conventional channel estimation where channel is 

assumed to have a rich multipath structure but it is 

difficult to apply same for mm-wave channel 

estimation because it is rank deficient, due to its 

sparse nature.  

The ORACLE estimator assumes that the angle 

of departure/arrival are known. To derive 

ORACLE estimator, rewriting y by substituting 

Hn = BR  H  BT
Hin above equation (13) and 

applying vector operator as in (11) we obtain 

simplified equations from (16)-(22) 

y =  ρ (FBFR)T ⊗ WB
H WR

H   BT
H 

T
⊗

BRvecH+vecN……………………………………

…………….(16) 
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y =

 ρ  (FB FR)T BT
H 

T
⊗ WB

H𝑊𝑅
𝐻𝐵𝑅 𝑣𝑒𝑐 𝐻 +

𝑣𝑒𝑐(𝑁 )……………………………………………

...….(17) 

𝑦 =  𝜌 𝐹𝐵
𝑇𝐹𝑅

𝑇𝐵𝑇
∗ ⊙𝑊𝐵

𝐻𝑊𝑅
𝐻𝐵𝑅 𝑣𝑒𝑐𝑑 𝐻 +

𝑣𝑒𝑐(𝑁 )……………………………………………

…….(18) 

𝑦 =  𝜌𝑄𝑠 . 𝑣𝑒𝑐𝑑 𝐻 +

𝑣𝑒𝑐(𝑁 )……………………...(19) 

𝑄𝑠
∆
  𝐹𝐵

𝑇𝐹𝑅
𝑇𝐵𝑇

∗ ⊙

𝑊𝐵𝐻𝑊𝑅𝐻𝐵𝑅……………….....(20)  

is an equivalent sensing matrix 

The ORACLE estimator also estimates 

𝑣𝑒𝑐𝑑 𝐻  in the LS sense which require full rank, 

𝑁𝑇𝑋
𝑏𝑒𝑎𝑚𝑁𝑅𝑋

𝑏𝑒𝑎𝑚 ≥ 𝐿. 

𝑣𝑒𝑐 𝑌 = 𝑦 =  𝜌𝑄𝑠 . 𝑣𝑒𝑐 𝐻 +

𝑣𝑒𝑐 𝑁  …………….(21) 

𝑦 =  𝜌𝑄𝑠ℎ +

𝑣𝑒𝑐(𝑁 )………………………………..(22) 

 Consider an example 𝑁𝑇𝑋
𝑏𝑒𝑎𝑚 = 𝑁𝑅𝑋

𝑏𝑒𝑎𝑚 =

24𝑁𝑇𝑋
𝑏𝑒𝑎𝑚 𝑁𝑅𝑋

𝑏𝑒𝑎𝑚 = 576; and 𝐺2 = 322 = 1024. 

The size of an equivalent sensing matrix will be 

𝑄𝑠 = 𝑠𝑖𝑧𝑒 𝑁𝑇𝑋
𝑏𝑒𝑎𝑚 𝑁𝑅𝑋

𝑏𝑒𝑎𝑚  𝑋  𝐺2 =

576 𝑋 1024  which means that the system has less 

rows and more columns, which signifies that there 

are more unknowns than the number of 

measurements or the observations, clearly the 

system is an underdetermined system.  

This problem is overcome by using the 

technology of compressed sensing(CS), where 

channel estimation problem is formulated as a 

sparse channel estimation where the number of 

estimated values of entries are L sparsity level 

which is very less than dimensions (𝑁𝑇𝑋𝑁𝑅𝑋 ).The 

number of dominant multipath are very less in real 

time environment.  

The ORACLE estimator is helpful in analyzing 

the lower bound of compressed sensing channel-

estimator. 

IV. CS BASED  MM_WAVE HYBRID 

MIMO SPARSE CHANNEL ESTIMATION 

 

Compressed sensing(CS) is a path breaking and 

a revolutionary technology to estimate sparse 

signals[16]. In CS based mm-Wave Channel 

Estimation, the channel estimation problem is 

formulated as a sparse channel estimation where 

number of non-zero entries or dominant multi-

paths are very less compared to conventional rich 

multipath channel structure. The OMP(Orthogonal 

Matching Pursuit) Algorithm is used to solve the 

problem of sparse recovery and estimate the 

channel[15]. 

In the OMP algorithm, the angle of arrival and 

angle of departure space [0 to 𝝅]is partitioned into 

𝑮 grids.  A dictionary corresponding to array 

response vectors of all the possible angles of 

arrivals/departures is created. Dictionary size 

depends on individual resolution where all the 

received array response vectors corresponding to a 

particular resolution may be placed. 

The angle of arrival at receiver is not known but 

it will be close to one of the angle of arrivals 

present in dictionary. If the particular angle of 

arrival/angle of departure is not present in the 

dictionary then it’s taken as zero. In a mm-wave 

system, multipath dominant components are very 

few, the problem is solved on path by path basis 

which is an efficient way of doing estimation for 

better accuracy. Only those entries of the matrix 

will be non-zero, if you have that corresponding 

angle of arrival and departure active. The Matrix 

with large number of zeros and only few non-

zeros, is a sparse Matrix. The columns contains 

the angle of arrival/departure pairs. The beam 

space matrices are similar to DFT matrices.  

At each iteration, the algorithm picks up the 

column of 𝑸𝒔 which has strong correlation with 

the residual and active column index will be 

updated. In CS, the sparse channel estimation 

problem can be mathematically represented as an 

optimization problem (23)-(25). 

𝑣𝑒𝑐 𝐻𝐶𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛 ǁ𝑦 −  𝜌𝑄𝑠ℎǁ2 = ǁ𝑦 −

𝐴ℎǁ2…..(23) 
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𝑠. 𝑡 ǁ𝑣𝑒𝑐(𝐻𝐶𝑆)ǁ𝑜 = 𝐿  Where   𝐴 =  𝜌𝑄𝑠  

………….(24) 

 

As 𝑙𝑜 𝑛𝑜𝑟𝑚 is non-convex, it’s hard to obtain 

its solution. The above difficulty can be replaced 

by an equivalent optimization problem given by 

𝑚𝑖𝑛 ǁℎǁ1   𝑠. 𝑡 𝑦 =  𝜌𝑄𝑠ℎwhich is 

convex……......(25) 

 

The OMP is a class of Greedy algorithm, which 

is a simple, less complex and iterative algorithm 

to estimate sparse signals. 

Let 𝐴 matrix consists of columns given by 

𝐴 =  𝑎1, 𝑎2, … . 𝑎𝑛  ,can be expressed as (26),(27) 

 

𝑦 =

𝐴ℎ………………………………………...…..(26) 

𝑦 =

 𝑎1, 𝑎2 , … . 𝑎𝑛  ℎ…………………………...……..(

27) 

 

At each iteration, the OMP algorithm correlates 

the maximum projection of each column of  𝐴 on 

observations/measurements 𝑦 ,  given in (28) and 

their difference yields a residue (30).  

𝑖1 = 𝑎𝑟𝑔𝑚𝑎𝑥│
𝑎𝑗
𝐻

ǁ𝑎𝑗 ǁ
𝑦│   

…………………………......(28)  

 Solve the LS problem given as  𝑚𝑖𝑛 ǁ𝑦 −

𝐴1ℎ1ǁ
2
 and obtain its estimate as ℎ1 which is 

given by (29)  

 

ℎ(1) =

(𝐴1
𝐻𝐴1)−1𝐴1

𝐻𝑦  ……………………………(29) 

Residue   𝑟 1 = 𝑦 − 𝐴1ℎ1  

………………………....(30) 

 

Now that particular column of  𝐴 is removed 

and find the maximum projection of correlation of 

the remaining columns of 𝐴 with the residue 𝑟 1  

and repeat the process. By using a proper suitable 

criteria for stopping OMP algorithm i.e when the 

difference of the norm of the consecutive residues 

lies below a certain threshold 𝜀 (31) such that  

  𝑟 𝑛 − 1 − 𝑟(𝑛)  ≤

𝜀……………………………...(31) 

 

The OMP based channel estimate for mm-Wave 

Hybrid MIMO system is given by (32)  

𝐻𝑛
𝐶𝑆 = 𝐵𝑅𝐻

𝐶𝑆𝐵𝑇
𝐻  

…………………………………..(32) 

Where 𝐵𝑅  , 𝐵𝑇 are the beam steering vectors, 

and the sum of square error is given by the 

Frobenius norm in equation (33) 

  Hn − Hn
 CS

  F
2  

...……………………………...…....(33) 

 

The performance metric is the Normalized 

Mean square error of OMP estimator which is 

defined by (34) 

 

10 log10  E  
  Hn−Hn 

CS
  F

2

  Hn  F
2   ……………………

……..(34) 

 

The Algorithm for mm-Wave channel 

estimation based on OMP algorithm with 

inputsQbar sensing matrix, measurement vector y 

and threshold ε is presented below: 

 

Algorithm : mm-wave Channel Estimation 

based on OMP 

Input: Qbar sensing matrix, measurement vector 

y and threshold ε 

h_b_omp = OMP_mmWave_Est (y,Qbar, ε) 

[rq,cq] = size(Qbar); % obtain the number of 

rows and columns 

set_I = zeros(cq,1);         % initialize active 

column index 

r_prev = zeros(rq,1);       % initialize the 

previous residue 

h_b_omp = zeros(cq,1); 

r_curr = y;  % initialize the current residue 

Qs = [];   %initialize sensing matrix 

ix1 = 1;                 % Counter=1 

while (abs((norm(r_prev))^
2
 - (norm(r_curr))^

2
) 

>ε)  do 

% obtain the index of the largest absolute inner 



 

January - February 2020 
ISSN: 0193 - 4120 Page No. 3119 - 3127 

 
 

3125 Published by: The Mattingley Publishing Co., Inc. 

product 

[m_val, m_ind] = max (abs (Qbar'*r_curr)); 

%obtains the  angle of departure/arrival  pairs 

set_I (ix1) = m_ind;  %Updates angle of 

departure/arrival pair set 

Qs = [Qs, Qbar (:,m_ind)]; % update the active 

column set 

H_b_ls = pinv(Qs)*y;   % estimate 

channel 

r_prev = r_curr; 

r_curr = y - Qs*H_b_ls;   %update 

residual 

ix1 = ix1 + 1;   %increment 

counter 

end while 

return h_b_omp(set_I(1:ix1-1)) = H_b_ls; 

 

V. SIMULATION RESULTS 

To simulate results, MATLAB 2018a 

(Mathworks) simulator is used.  

Consider the Tx and Rx consisting of a uniform 

linear array with NTX
= NRX

= 32, the number of 

RF chains NRF = 8.  N-Beam is the number of 

transmitted pilot beams and L is the sparsity level 

which is set to 4 i.e the number of   

dominant paths arriving at the receiver. The angle 

of arrival and angle of departure space are divided 

into G grids and a dictionary is created 

corresponding to array response vectors of all the 

possible angles of arrivals/departures.  

The results shows that lower bound are obtained 

from ORACLE-LS estimator approaching Cramer 

Rao Bound and the upper bound is obtained based 

on the performance of OMP, whose theoretical 

analysis is derived in [15]. 

The procedure for sparse way of estimating the 

channel in mm-Wave Hybrid MIMO system is 

presented below stepwise:- 

Step 1:  

Set up the required parameters for mm-Wave 

channel estimation as shown in Table-1 below: 

Step 2: 

Initialize the quantized transmit/receive array 

beam response vectors and generate their 

dictionary matrix. Here the cosθ values are 

directly generated not the angles which is given 

by dirCos=2/G*(I-1)-1,for I=1:G 

when I=1, dirCos=-1 and when I=G then dirCos 

≈1 (-1,1] and by using its results the vectors of the 

array response are generated. 

TABLE I.  SIMULATION PARAMETERS 

Simulation Parameters 

NTX
 32 

NRX
 32 

RF chains 8 

N_Beam 24 

Grid G 32 

ITER 1 : 5 

L sparsity 4 

dirCos (-1,1] 

SNRdB 10:10:50 

Step 3:  

Dictionary Matrix creation for RF and Baseband 

precoder/combiner  F = FBFR . 

Create mm-wave dictionary matrix for RF 

precoder and combiner, where RF 

precoder/combiner are the DFT matrices where 

the Baseband matrices of precoder/combiner are 

unitary block diagonal matrices( for simplicity). 

step 4:  

Obtain the sensing matrix Q which is the 

kronecker product of precoder/combiner matrices 

at the baseband and RF as given in (35) 

  

 Q=kron((FB.')*(FR.'),(WB')*(WR'))……

….…(35) 

Step 5:  

The channel gain is generated and obtain its 

channel matrix H. The channel noise is generated 

over the pilot beam array vectors. 

The Observation/measurement vector y is 

obtained. 

 Step 6:  

Computate the Normalized Mean square error 

for OMP,ORACLE LS along with Cramer Rao 
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bound(CRB). CRB gives the lower bound of the 

NMSE estimate over the SNR. 

The NMSE for mm-Wave Hybrid MIMO 

system using OMP algorithm is estimated using 

the expression given in equation(34). 

The Cramer Rao bound (36) over the range of 

SNR is plotted, which gives the lowest bound of 

the estimated error as derived in[15] and as shown 

in Fig.3 

CRB=tr(inv(Qs'*Qs))/(Nt*Nr)……..……(36) 

Where Qs

∆
  FB

T FR
TBT

∗ ⊙ WB
H WR

H BR  is an 

sensing matrix of the Hybrid MIMO precoder- 

combiner along with the beam array response 

vectors. 

 
Fig 2. NMSE performnace against SNR for the 

OMP and ORACLE-LS Estimator when 

Nt=Nr=32, 

Sparsity- level=5,NRF =8 

 

Fig.2 shows the NMSEs vs SNR performance of 

the ORACLE LS estimator and OMP when 

NT=NR=32 and N_Beam= NT 
Beam

=NR 
Beam 

=24. It 

can be observed that as the SNR varies from 10dB 

to 50 dB, the NMSE value reduces linearly and 

the performance of OMP estimator is close to 

ORACLE LS estimator and the OMP also shows 

advantage with increase in sparsity. The ORACLE 

LS estimator shown consistent performance and it 

gets better with reduction in sparsity level and 

deteriorates with more sparsity. 

Unlike LS estimator which require large number 

of samples for an efficient estimate, OMP 

performs the computation with very few number 

of samples efficiently. When the samples are 

sparse OMP shows advantage over conventional 

estimators. 

 
Fig 3. NMSE performance against SNR at 

different levels of iterations of  OMP, ORACLE 

LS estimators approaching CRB lower bound. 

 

In Fig.3, the performance error NMSE of the 

proposed OMP algorithm caused due to 

assumption of the quantized angle of arrival and 

departures is evaluated. The curves portray the 

performance of the proposed algorithm at 

different values of iteration when sparsity level is 

set to L=4, which can also be varied. As the 

number of iterations vary in steps from1 to 5 with 

(ITER=1,L=4), (ITER=2,L=4),(ITER=3,L=4), 

(ITER=4,L=4),(ITER=5,L=4) the performance 

gets closer and closer to CRB means that 

estimation error is minimum. It shows that the 

performance loss due to quantization assumption 

is very small in OMP algorithm and has an 

advantage over conventional LS algorithm. 

VI. CONCLUSION 

A CS based sparse channel estimator in mm-

Wave hybrid MIMO system was proposed, based 

on a virtual channel model. The OMP algorithm 

solves the problem by employing a dictionary of 

array response vectors consisting of quantized 

angle grids. The computer simulations shows the 

outperformance of OMP algorithm with sparse 

data, and also reaches the Cramer Rao lower 

bound in error estimation with respect to SNR. 

Future extension in this area will be to use the 

Artificial Intelligence(AI)based learning 
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algorithms to enhance its performance further. 

Also dictionaries of precoders–combiners can be 

enhanced by using different array response 

vectors like 2D arrays. 
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