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Abstract 

The advancement in unmanned aerial vehicle (UAV) automation has greatly increased the 

application of autonomous UAVs in both civilian and military tasks. Powerful yet light 

weight onboard computers are now available to further reduce the size of UAVs to a great 

extent and thus shrinking them to a size suitable for indoor missions. The main challenge 

with indoor navigation is usually the lack of GPS reception. Thus, simultaneous 

localization and mapping algorithms (SLAM) must utilize proximity sensors such as 

LiDAR, SONAR, and Stereo Cameras. In order to keep the size and weight of the UAV to 

a minimum, extracting more information from a limited number of sensors is vital. Hence, 

this research aims at the improvement, implementation and testing of localization and 3D 

mapping algorithms using a single rotating 2D LiDAR. 

Keywords: 3-D Mapping, LiDAR SLAM, Rotating LiDAR. 

 

I. INTRODUCTION 

Autonomous UAVs have grown in their use in the 

last few decades with the focus on developing the 

autonomous capabilities of these vehicles. 

Autonomous control using GPS position and 

velocity signals as feedback has matured in that time 

as evidenced by the hobby grade UAVs widely 

available today. Some examples include the toy-

grade UAVs (commonly known as drones) from 

DJI, Yuneec and 3D Robotics. 

The attention has in more recent years switched to 

autonomous navigation within GPS denied 

environments. Light detection and ranging sensors, 

or LiDAR, have grown in popularity in these 

situations however the early single ray laser 

scanners cannot provide sufficient geometrical 

information in complex environments. LiDAR 

sensors have since then evolved from the earlier 

versions to sensors with spinning mirrors capable of 

detecting objects 270 deg about its spinning axis and 

plotting out maps in 2-dimensions (2D). Robotics 

researchers adopted these sensors quickly, by 

developing 2D SLAM algorithms to align a 

sequence of local planar scans into a global 2D map 

[1]. The laser scanners help estimate autonomous 

vehicles’ relative position and generate 2D floor 

maps. 

While 2D maps are sufficient for robots to 

precisely localize itself within a given area, it does 

not capture obstacles on the single plane map 

generated from the 2D laser scan. The same is true 

for outdoor environments thus more detailed 

information are required in these scenarios. To 

overcome this, researchers have designed ways to 

capture full 3D proximity information (point cloud) 

with the same 2D LiDAR sensors by rotating the 

whole sensor on a second axis. 

Two rotating schemes prove popular, the Nodding 

and Turning LiDAR. Nodding LiDAR is achieved 

by placing a 2D LiDAR sensor on a mount 

controlled by a servo tilting mechanism. Coverage 

volume of the LiDAR is dependent on the tilting 

angle, which normally forms a sinusoidal wave. On 

the other hand, Turning LiDAR has its rotating axis 

pointing towards the front of the 2D LiDAR sensor. 

When the sensor is rotated, it forms a sphere of 

sensor beams. These configurations generate 3D 

point clouds with different density distributions and 

are the most widely used. Mechanical constraints, 

however, limit their application in real-time 
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operations as each scan takes a few seconds to 

complete. 

For a Nodding LiDAR system, the coverage of the 

laser scan in the vertical direction depends on the 

nodding angle which due to mechanical constraints 

and the update frequency of each scan usually less 

than a full swipe (180 deg). These systems are 

generally used to generate maps of the environment 

to ensure safe autonomous navigation [2]. The 2D 

map is usually sufficient for UAV navigation if it 

flies at a constant height [3]. However, the limited 

field of view and the lack of overlap between 

adjacent scans taken by the laser sensor pose a 

problem with this approach, especially when the 

approach is applied to environment mapping. 

Essentially, this solution is not able to capture parts 

of the environment directly above and below the 

UAV [4]. 

To overcome this blind-spot problem, Csiro has 

introduced a device called Zebedee for 360 deg 

mapping. Zebedee was made with a Hokuyo LiDAR 

scanner of model UTM-30LX combined with a 

MicroStrain 3DM-GX3-MEMS inertial 

measurement unit (IMU) mounted on a spring 

platform connected to the handle [5]. By waving the 

device, laser scans on various random angles will be 

recorded and then fed to a customized software to 

generate 3D point clouds. Many researchers have 

also developed a Turning LiDAR system by 

mounting the laser scanner and the IMU on a servo, 

which continuously turn between ±90 degree [6]. 

In more recent developments, it has been seen that 

360 deg turning LiDAR systems running on-board a 

small-scale UAV [7], or ground vehicle [8] have 

been achieved. Technically in hardware design, a 

360 deg turning system requires a more complex 

mechanism, such as a precise encoder odometry to 

measure rotating velocity, and the need of rotating 

slip ring for wiring. With the benefit of a full 

rotation, objects above and below the machines can 

be observed. 

One particular challenge that arises in the 

applications of mapping using turning LiDAR 

system is when the sensor motion is too fast relative 

to the sensor update rate, resulting in distorted 

scanned data. Turning LiDAR systems faces a 

challenge when the sensor motion outpaces the 

measurement time. This results in locally distorted 

scanned data. A solution to this problem is proposed 

in [9]–[11], by generating visual images from laser 

intensity, and then proceed to match visually distinct 

features between each image to recover the motion 

of a vehicle. In these works, the vehicle motion is 

modelled as either constant velocity or Gaussian 

processes. 

For state-of-the-art SLAM algorithm utilizing 

rotating LiDAR systems, most notably 

LiDAROdometry And Mapping (LOAM) work 

from CMU [12], [13] and Bentwing from Csiro [14], 

[15] have shown positive results with actual 

implementation in UAVs. While both solutions 

employ different algorithms, they have achieved 

successful results with accurate localization and 

mapping performance. 

Csiro has implemented their localization and 

mapping algorithm using a freely rotating 2D 

LiDAR sensor on their UAV codenamed Bentwing. 

The 2D LiDAR is passively rotated by the 

downwash of the UAV propellers in the frequency 

of 1 to 2 Hz. While their algorithm is too 

computationally intensive to run on-board, they have 

achieved a high accuracy in mapping with average 

translation error of 0.1% in indoor, and 0.2% error 

in outdoor. The data was collected with Bentwing 

flying at 1 to 2 m/s speed. 

On the other hand, researchers from CMU have 

developed their LOAM algorithm using a different 

approach, either via a half rotating 2D LiDAR, a 

fully rotating 2D LiDAR, and also with Velodyne 

3D LiDAR sensors. Their algorithm was 

implemented on a UAV, flying at 1 m/s speed. The 

result is less accurate as compared to Csiro's 

method, with translation accuracy of 1% error in 

indoor environment, and 2.5% error in outdoor 

environment.  

In this manuscript, the LOAM algorithm by CMU 

will be adopted as our base point to implement on a 

UAV system with SLAM capability. Section II 

describes the LOAM algorithm; UAV hardware 

setup will be listed in Section III; Improvement on 
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LOAM algorithm implemented on the UAV is 

shown in Section IV; while the next section shows 

the flight test results of the designed UAV with the 

proposed algorithm; finally, concluding remarks are 

made in Section VI. 

II. LIDAR ODOMETRY AND MAPPING 

ALGORITHM 

LOAM is proven to achieve low drift motion 

estimation at relatively lower computational costs. 

This is done through the division of SLAM 

algorithm into two parallel parts. One part performs 

odometry calculations at high frequency and low 

fidelity to achieve fast motion estimation. While the 

other part carries out fine matching and feature 

registration of the 3D point-cloud at a much lower 

frequency. For completeness of this manuscript, key 

equations and idea of the LOAM algorithm will be 

shown in this Section. They are extracted and 

summarized from [12] and [13]. 

AFeature Point Extraction 

Feature points are selected from data points that 

are either on edges or on planar patches. A data 

point is then sorted as an Edge point Ek  or Planar 

Point Hk , depending upon the c value, which refers 

to the smoothness of the surface: 

 c =
1

 S ⋅  Xk,i
L  

  (Xk,i
L

j∈S,j≠i

− Xk,j
L )  (1) 

Here, S is the set consists of consecutive points of 

i returned by the LiDAR in one scan, such that 

i ∈ Pk . In the implementation, the environment is 

sub-divided into four regions to distribute the feature 

points evenly. Each region can supply a maximum 

of two Edge features and four Planar features. Each 

feature point i can be selected as an Edge feature or 

Planar feature, if its c value is greater or less than a 

given threshold, respectively. 

B Feature Point Correspondences 

The point-cloud perceived at the end of one sweep 

is projected to the starting time stamp of the next 

sweep, along with the Ekand Hk . Let Pk  denote the 

point cloud perceived for a scan starting at tk , P k−1 

denotes the projected point-cloud, E k  and H k  

represent the projections of Ek  and Hk  respectively. 

For every point i in E k  and H k a corresponding 

closest neighbor, which is part of an edge-line and 

planar patch respectively will be found in P k−1. 

Let i ∈ E k , such that  j, l ∈ P k−1 are the 

corresponding closest neighbors which form an edge 

line, the distance of any point to this line can be 

computed as 

 

dE

=
  X k,i

L − X k−1,j
L  ×  X k,i

L − X k−1,l
L   

  X k−1,j
L − X k−1,j

L   
 

(2) 

where, X k,i
L , X k−1,j

L , X k−1,l
L are the coordinates of the 

points i, j, l in Lk  respectively. 

Let i ∈ H k , such that three non-collinear points 

j, k, m ∈  P k−1 represent the planar patch. The 

distance of any point to the plane is then given by 

 

dH

=

 
 X k,i

L − X k−1,j
L  

 X k−1,j
L − X k−1,l

L  ×  X k−1,j
L − X k−1,m

L  
 

  X k−1,j
L − X k−1,l

L  ×  X k−1,j
L − X k−1,m

L   
 

(3) 

where, X k−1,j
L ,X k−1,l

L , X k−1,m
L  are the coordinates of 

the points j, l, m in Lk  respectively. 

C Motion Estimation 

The rotating motion of the LiDAR is modelled 

with a constant linear and angular velocity during a 

sweep, which allows for linear interpolation of the 

pose transform for the data points received at 

different times within a single sweep. 

Tk
L(t)represents the LiDAR pose transform between 

[tk , t], which contains the 6-DOF motion of the 

LiDAR as Tk
L(t) =   τk

L t , θk
L t   where, τk

L(t) =

 tx , ty , tz  is the translation and θk
L(t) =  θx , θy , θz  is 

the rotation in Lk . For any given point i ∈  Pk , Tk,i
L  is 

the pose transform between  tk , tk,i  which can be 

calculated from a linear interpolation of Tk
L t  as 

follows 

 Tk,i
L =

tk,i − tk

t − tk
Tk

L(t) (4) 
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Fig. 3.  Solidworks model of the Digital servo 

 

 

Fig. 2. Solidworks Model of the rotating  

mechanism 

 

The projection of Ek  and Hk  as E k  and H k 

respectively to the beginning of the sweep is done as 

per the following formula 

 X k,i
L = Rk,i

L Xk,i
L + τk,i

L  (5) 

whereRk,i
L  and τk,i

L  are the rotation and translation 

matrices corresponding to Tk,i
L . 

From (1) which calculates the distance between a 

point and its corresponding closest neighbor in an 

edge line, upon combining this equation with (5). 

The following relationship between Ek  and 

corresponding edge line can be found by 

 fE  Xk,i
L , Tk

L t  = dE , i ∈  Ek (6) 

Similarly, combining (3) and (5), another 

geometric relationship between Hk  and the 

corresponding planar patch can be established 

 fH  Xk,i
L , Tk

L t  = dH , i ∈  Hk  (7) 

Finally, the motion of the LiDAR can be solved 

by using the Levenberg-Marquardt method. 

Stacking (6) and (7) for each feature point in Ek  and 

Hk  results in a nonlinear function 

 f  Tk
L t  = d (8) 

where each row in f represents a feature point 

where d contains the corresponding distances. With 

(8), the Jacobian matrix of f with respect to Tk
L t can 

be computed as J = ∂f/(∂Tk
L(t)). Then (8) can be 

solved via non-linear iterations by minimizing d, as 

follows 

 
Tk

L t ← Tk
L t −  JTJ

+ λdiag  J
TJ  

−1
JTd 

(9) 

whereλ is a factor identified by Levenberg-

Marquardt method. 

D LiDAR Mapping 

This algorithm runs at a much slower frequency, 

when compared to LiDARodometry. It is called at 

the end of each sweep k, where in it registers and 

matches P k  to World coordinates W. Let Qk−1 be the 

point cloud on the global map, accumulated to 

sweep k − 1. Tk−1
W is the pose of the LiDAR at the 

end of sweep k − 1, tk . Using the outputs of LiDAR 

Odometry, the mapping algorithm extends Tk−1
W  for 

one sweep from tk to tk+1, in order to generate Tk+1
W . 

The transformed P k  in the world frame W, is denoted 

as Q k, which is matched to Qk−1 by optimizing the 

LiDAR poseTk+1
W . 

The feature points are extracted ten times as many 

points as described in the previous section. The 

matching of the feature points are then be found 

from points in Qk−1 that intersect with Q k within a 

certain region around the feature points, in this case, 

10 cm × 10 cm × 10 cm. Let S′ denote the 

surrounding points, then for any edge point only 

those points are kept in S′ which are a part of edge 

lines. Similarly, for planar points only those points, 

which are a part of a planar patch are kept in S′. The 

co-variance matrix of S′ denoted by M is computed 

along with the eigen-values E and eigen-vectors V. 

For an Edge line in S′, V contains one eigenvalue 

that is significantly greater than the other two, and 

the E associated with this value represents the 

direction of the edge line. Whereas if S′ contains a 

value significantly smaller than the other two, the E 

associated with that value represents the direction of 

the planar patch. 
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Fig. 4. Solidworks model of the LiDAR holder 

 

 

Fig. 5. Intel NUC without shell 

 

 

Fig. 6. LiDAR scanning range 

 

 

Fig. 7. Largest dimension of UAV 

 

The distances of the edge and the planar points to 

their correspondences is calculated as per (2) and 

(3). Then (7) and (8) are used to determine 

individual relationships for edge points and planar 

points. Finally, the optimization problem is again 

solved using the LevenbergMarquadt method, which 

has been adapted to robust fitting and Q k is finally 

registered on to the map. To ensure even distribution 

of the registered points each time a new scan is 

merged to the map, the point cloud is down-sized by 

using Voxel-Grid filters.  

The edge points and planar points are filtered 

through Voxel-Grid filter to a different sized voxel. 

The edge points use 5 cm × 5 cm × 5 cm sized 

voxels, the planar points use 10 cm × 10 cm × 10 

cm. In the final map, the entire map is resized to a 

500 m × 500 m × 500 m region to ensure low 

memory usage. 

III. UAV HARDWARE SETUP 

To realize the 3D mapping algorithm discussed in 

the last section, a UAV platform is specifically 

designed and constructed to include the mentioned 

sensors together with a powerful processor. In this 

section, the hardware setup on the proposed UAV 

will be described in detail.  

A Rotating 2-D LiDAR 

The model of 2-D LiDAR sensor used is the 

Hokuyo UTM30EW. The Solidworks 1:1 model of 

the sensor is developed with actual dimension and 

weight for the visualization and assembly of the 

UAV (see Fig. 1). 

A mounting bracket for the sensor was milled out 

of aluminum to hold the sensor in place (see Fig. 2). 

The mount was designed to withstand strong torque 

as the LiDAR sensor will rotate back and forth in 

the proposed system.  

Dynamixel AX-18a, a high torque digital servo 

with built in servo controller and position encoder 

was selected for this research work (see Fig. 3). It 

eliminates the need for external additional circuitry, 

thus providing a good power to weight ratio to the 

system. The highest possible torque (1.75 Nm) 

provided by the servo is more than sufficient to 

handle the load caused by the rotating sensor. 

A mount for the servo was designed and 

fabricated to hold the servo motor (see Fig. 4). All 

the holes and recesses with exact dimension for the 

wiring and connectors are indicated in the 

Solidworks design. To provide extra rigidity and 

strength to the structure of the mount, two raised 
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Fig. 10. Filtered acceleration on z-axis 

 

 

Fig. 11. Distortion due to sharp heading turn 

 

columns at the base of the mount were added. 

Finally, the model was 3D printed with ABS plastic 

for actual implementation. 

B On-board Intel Processor 

The NUC from Intel was selected as the primary 

on-board computer to run the LOAM algorithm. It 

was programmed in Robot Operating System (ROS) 

for real-time application of the UAV. Intel’s NUC 

has fast multi-thread performance, and it is running 

full quad-core chips in a light weight package. In 

addition, the outer shell of the processor was 

removed to further reduce unwanted weight. The 

bare NUC (see Fig. 5) will be hard-mounted on the 

UAV to ensure no unwanted contact of the circuit 

board to any conductive materials. 

C Multirotor UAV Platform 

In order to provide sufficient clearance to the front 

of the sensor, a H frame design for the UAV is 

adopted, rather than the conventional X frame 

UAV as shown in most literature such as [16] – 

[18]. This design taken the consideration of the arms 

of the UAV to be swept back and parallel to the 180 

degree field of view of the LiDAR sensor as shown 

in Fig. 6. 

In this proposed design, the point-clouds to be 

generated would have a full 180 degree of horizontal 

field-of-view (FOV), to ensure a more accurate 

mapping of the system. 

As seen from Fig. 7, the entire UAV is able to be 

packaged to a minimal of 600 mm wide, making it 

ideal size to pass through door ways and corridors in 

any indoor environment. This factor enables the 

designed UAV to be used extensively for indoor 

navigation and mapping. 

The downside of this design is the challenge of 

keeping the center of gravity of the UAV close to its 

geometrical center. By keeping the UAV center of 

gravity close to the geometrical center, it will 

prevent imbalance in the load which might cause 

drastic dynamic changes of the UAV systems. In the 

 

Fig. 8. Solidworks impression of the complete UAV 

 

Fig. 9.  Filtered acceleration on x-axis 
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proposed design, as substantial portion of the weight 

are from the sensor that is mounted in front of the 

UAV, therefore, the remaining components such as 

the processor and the battery had to be placed 

behind the UAV, to compensate the shift in the 

center of gravity. As a result, the final design can be 

visualized in Fig. 8. Once the design has proven to 

be feasible from Solidworks, a prototype of the 

UAV is fabricated to the exact scale as designed. 

IV. IMPROVEMENT ON LOAM 

The LOAM algorithm implemented to the Intel 

NUC was able to generate a high fidelity and un-

distorted map at slow speeds, but struggled to 

achieve good results for UAV flying speeds over 0.5 

m/s due to the slow update rate of the algorithm. 

One way to improve the system is to incorporate 

IMU measurements to the algorithm. The IMU 

selected in the setup is a Pixhawk from 3DRobotics 

which is a high resolution IMU capable of 

publishing the orientation and acceleration data at 

high frequency (150 Hz). This data is utilized in two 

main ways: (i) The orientation data is used to align 

the point cloud perceived over one sweep to the 

initial position of the LiDAR in that sweep; and (ii) 

The acceleration data is used to partially remove the 

distortion from the mapping process. 

There was one last hurdle before the IMU data 

could be incorporated, the hardware setup of our 

system introduced a very unique problem. The 

rotations of the LiDAR, specifically at the moment 

of direction change from  

clockwise to counter-clockwise, induced vibration 

based noise into the accelerometer readings, which 

could not be dampened by hardware solutions. As 

such a High Pass Filter was designed and 

implemented in real-time on the on-board computer 

to filter out the low frequency (1 Hz, i.e. the speed 

of the LiDAR rotations) noise caused by vibrations. 

The filtering results can be seen in Fig. 9 and Fig. 

10. The improvement on the LOAM accuracy 

especially when it is used on UAVs can be seen in 

Fig. 11 and Fig. 12 which shows the before and after 

implementation of the proposed IMU compensator 

described above. In both cases, the UAV is 

commanded to make a sharp heading change of 

approximately 1 rad/s inside a clos ed room.

 

V. RESULTS 

To verify the feasibility of the algorithm to be on 

actual UAV, several flight tests were performed. In 

the tests, the UAV was commanded to take-off, 

navigate to various part of the building, then back to 

the take-off point to land directly on it. This will 

effectively act as a closed-loop to allow ground truth 

data to be obtained. 

In Fig. 13, a snapshot of the map generated by the 

improved algorithm within the interior of the 

building is generated. The minor distortions seen in 

the map are due to the movement of blinds on the 

windows, because of the downwash from the props. 

This movement shows up as uneven wall surfaces, 

instead of smooth flat planes. For comparison 

purpose, Fig. 14 shows a picture of the implemented 

UAV flying in the indoor building as the same 

instant of the generated map shown in Fig. 13. High 

similarity of the map can be observed. 

Overall, after flying for approximately 100 meter 

distance navigated through multiple corridor of the 

building, the map of the entire floor was generated 

in real time and displayed live on the ground control 

station via a laptop. The map generated can be seen 

in Fig. 15. The graphical results have verified the 

improved algorithm to work well on the actual UAV 

in real time, using an Intel NUC i7 processor 

embedded on-board the UAV. 

VI. CONCLUSION 

The improved IMU integrated LOAM algorithm 

was tested in various environments and showed that 

it was able to handle 2 m/s velocity maneuvers and 1 

rad/s turns. From the maps generated, it can be 
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concluded that the algorithm is capable of good 

performance, but is bottle necked by the sensors and 

data given to it. The ultimate bottle neck for the 

algorithm is the rotating 2D LiDAR itself. Which is 

extremely heavy along with the servos and the 

control board for the servo which adds more weight 

to the entire setup, drastically reducing flight 

endurance. The way the 2D LiDAR setup works 

fundamentally limits the amount of data that can be 

generated within a second, i.e., the rate of data 

published cannot be pushed beyond the physical 

limit set by the turning of Hokuyo UTM30EW. This 

indirectly sets a limit on how fast the pose estimates 

can be generated, hence ultimately limiting our 

ground velocity to a ceiling of 1 to 2 m/s. 
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