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Abstract: 

To discover the actual route and to determine the position of a vertex in the network, we need 

to select the landmarks by making certain local measurement at the smallest subsets of the 

nodes. Since each of these measurements are potentially quite costly, the objective here is to 

minimize the number of measurements which still discover the whole graph. A subset 𝑆 of 

vertices of a graph 𝐺 is called a rational resolving set of 𝐺 if for each pair 𝑢, 𝑣 ∈ 𝑉 − 𝑆, there 

is a vertex 𝑠 ∈ 𝑆 such that 𝑑(𝑢 𝑠⁄ ) ≠ 𝑑(𝑣/𝑠), where 𝑑(𝑥 𝑠⁄ )  denotes the mean of the 

distances from the vertex s to all those 𝑦 ∈ 𝑁[𝑥]. A rational resolving set denoted by 𝑟𝑟 set, 

having minimum  cardinality is a   rational  metric  basis  and its cardinality is the lower  𝑟𝑟 
number,  denoted  by 𝑙𝑟𝑟(𝐺).  The   maximum   cardinality  of  a  minimal  𝑟𝑟 set  is  called  the upper  

𝑟𝑟 number of 𝐺, denoted by 𝑢𝑟𝑟(𝐺). In this paper varieties of minimal rational resolving sets of a 

graph 𝐺 are defined on the basis of its compliments, called the lower and upper 𝑟𝑟 , 𝑟𝑟
∗, 𝑅𝑟 , 𝑅𝑟

∗ 

numbers and discussed their optimality in power of a cycle. 

Keywords: Power of a Graph, Resolving Set, Rational Resolving Set, Metric Dimension, 

Rational Metric Dimension. 

AMS Subject Classification number: 05𝐶12, 05𝐶38 

§ 1. INTRODUCTION 
Due to the global exponential growth, it is hard to obtain 
the accurate map of the internet and such networks are 

represented by a graph with nodes and links, is a 

prerequisite when investigating the properties of internet. 

To discover the actual route and to determine the position 
of a vertex in the network, we need to select the 

landmarks by making certain local measurement at the 

smallest subsets of the nodes. Since each of these 
measurements are  potentially quite costly, the objective 

here is to minimize the number of measurements which 

still discover the whole graph. We formulate this problem 
by defining the rational metric dimension in such a way 

that the distance of the vertex from the landmark and the 

distances of its neighborhood vertices from the landmark 

are considered. 

For each vertex 𝑢 of a the graph 𝐺, 𝑁(𝑢) = {𝑥 ∶  𝑢𝑥 ∈
𝐸(𝐺)} denotes the open neighborhood of 𝑢 and 𝑁[𝑢] =
𝑁(𝑢) ∪ {𝑢} denotes the closed neighborhood of u. Let 

𝑑(𝑢, 𝑣) be the length of a shortest path between 𝑢 and 𝑣. 
We use the standard terminology, the terms not defined 

here may be found in [1, 3]. 

All the graphs considered here are undirected, finite, 

connected and simple. A subset 𝑆 of the vertex set 𝑉 of a 

connected  graph 𝐺 is said to be a resolving set of 𝐺 if for 

every pair of vertices 𝑢, 𝑣 ∈ 𝑉 − 𝑆 there exists a 

vertex  𝑤 ∈ 𝑆 such that 𝑑(𝑢,𝑤) ≠ 𝑑(𝑣,𝑤). The 

minimum cardinality of a resolving set 𝑆 of 𝐺 is called 

the metric dimension of a graph 𝐺 and is denoted by 

𝛽(𝐺). The metric dimension was defined by F. Harary 

and R. A. Melter [2], and indepently by P. J. Slater [6]. B. 

Sooryanarayana et al. [8, 9] obtained many results on 

metric dimension. 

In 2014, A. Raghavendra et al. [7] introduced rational 

metric dimension of graphs. M. M. Padma and M. 

Jayalakshmi [4, 5], introduced the concept of 𝑟𝑟 , 𝑟𝑟
∗, 𝑅𝑟 , 

𝑅𝑟
∗ sets of graphs. Wong and Copper-smith [10] defined a 

circulant graph as a generalization to the double loop 

network and is used for the design of computer and 
communication network due to its optimal fault tolerance 

and routing capabilities. In this paper, various classes of 

rational resolving sets and rational metric dimension for 

the circulant graph 𝐶𝑛(1, 2, … , 𝑘) for certain k are 

discussed. 

§ 2. On classes of rational resolving sets of a graph 

Consider a graph 𝐺(𝑉, 𝐸). For 𝑢 ∈ 𝑉, associate a vector 

with respect to a subset 𝑆 = {𝑠1,  𝑠2,  𝑠3 , … , 𝑠𝑘}  of  𝑉, by  

𝛤(𝑢/𝑆) = (𝑑 (𝑢 𝑠1)⁄ , 𝑑 (𝑢 𝑠2)⁄  , … , 𝑑 (𝑢 𝑠𝑘)⁄ ), where 

𝑑(𝑢/𝑣) =  
𝛴𝑢𝑖∈𝑁[𝑢]𝑑(𝑢𝑖,𝑣)

𝑑𝑒𝑔(𝑢)+1
. Then the subset 𝑆 is said to be a 

rational resolving set which is also called an 𝑟𝑟  set if 

𝛤(𝑥/𝑆) ≠ 𝛤(𝑦/𝑆) for all  𝑥, 𝑦 ∈ 𝑉 − 𝑆. The minimum 

cardinality of a rational resolving set 𝑆 is called the 

rational metric dimension and is denoted by rmd(𝐺) or 

𝑙𝑟𝑟(𝐺). An 𝑟𝑟  set of 𝐺 is said to be minimal if no subset of 
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it is an 𝑟𝑟  set. Clearly minimum cardinality of a minimal 

𝑟𝑟  set is 𝑙𝑟𝑟(𝐺), also called the lower 𝑟𝑟  number and the 

maximum cardinality of a minimal 𝑟𝑟  set of graph 𝐺 is 

called the upper 𝑟𝑟  number of 𝐺, denoted by 𝑢𝑟𝑟(𝐺). A 

subset 𝑆 of 𝑉 (𝐺) is said to be an 𝑟𝑟
∗  set if 𝑆 is an 𝑟𝑟  set 

and 𝑆 = 𝑉 − 𝑆 is also an 𝑟𝑟  set. The minimum and the 

maximum cardinality of a minimal 𝑟𝑟
∗ set of graph 𝐺 are 

called, respectively, the lower 𝑟𝑟
∗ number and upper 𝑟𝑟

∗ 

number of 𝐺 and are denoted by 𝑙𝑟𝑟∗(𝐺) and 𝑢𝑟𝑟∗(𝐺). A 

subset 𝑆 of 𝑉(𝐺) is said to be an 𝑅𝑟  set if 𝑆 an 𝑟𝑟  set and 

𝑆 is not an 𝑟𝑟  set. The minimum and maximum 

cardinality of a minimal 𝑅𝑟  sets of 𝐺 are called, 

respectively, the lower and upper 𝑅𝑟  number of 𝐺 and are 

denoted by 𝑙𝑅𝑟(𝐺) and 𝑢𝑅𝑟(𝐺). A subset 𝑆 of 𝑉(𝐺) is 

said to be an 𝑅𝑟
∗ set if both 𝑆 and 𝑆 are not 𝑟𝑟  sets. The 

minimum and maximum cardinality of a minimal 𝑅𝑟
∗ 

sets of 𝐺 are called, respectively, lower and upper 𝑅𝑟
∗ 

number of 𝐺 and are denoted by 𝑙𝑅𝑟∗(𝐺) and 𝑢𝑅𝑟∗(𝐺). 

§ 3. On classes of rational resolving sets of power of a 

cycle 

Let 𝑣1, 𝑣2, … , 𝑣𝑛  be the vertices of the cycle 𝐶𝑛  on 

𝑛 vertices in order.  The 𝑘𝑡h power of the graph 𝐺, 

denoted by 𝐺𝑘, defined on vertex set of 𝐺 and two 

distinct vertices 𝑢 and 𝑣 of 𝐺 are adjacent in 𝐺𝑘 if and 

only if their distance in 𝐺  is at most 𝑘. Circulant graph 

𝐶𝑛(1,2,3, … , 𝑘) is 𝑘𝑡h power of a cycle 𝐶𝑛  with the 

vertex set V(𝐶𝑛
𝑘) = 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}. 

Remark 3.1. The graph 𝐶𝑛
𝑘 is defined for any 𝑘 ∈ 𝑍+ and 

𝐶𝑛
𝑘 = 𝐶𝑛

𝑘+1 = 𝐾𝑛  whenever 𝑘 ≥ ⌊
𝑛

2
⌋  (dia(𝐶𝑛) =  ⌊

𝑛

2
⌋).  If 

k = 1, then 𝐶𝑛
𝑘 = 𝐶𝑛  and  if 𝑘 = ⌊

𝑛

2
⌋,  that is  𝑘 =

𝑛

2
  when 

n is even;  k = 
𝑛−1

2
 , when n is odd,  then 𝐶𝑛

𝑘 = 𝐾𝑛 and in 

both the cases 𝑟𝑟, 𝑟𝑟
∗ , 𝑅𝑟 , 𝑅𝑟

∗ are discussed in article [4] ⋅ 
For any graph G, we use the convention that if any of 

𝑟𝑟 , 𝑟𝑟
∗, 𝑅𝑟 , 𝑅𝑟

∗ sets does not exist, then their cardinality is 

zero. 

Lemma 3.2. For the graph  𝐶2𝑘+2
𝑘  ,  𝑟𝑚𝑑(𝐶2𝑘+2

𝑘 ) =
𝑛

2
. 

Proof. Let 𝑛 = 2𝑘 + 2 and 𝑣1 be any vertex of 𝐶𝑛
𝑘. Then 

𝑑(𝑣1, 𝑣𝑖) = 1 for every i with 2 ≤ 𝑖 ≤ 𝑛 except 𝑖 =
𝑛+2

2
 

and 𝑑(𝑣1, 𝑣n+2
2

) = 2 which implies, 

𝑑(𝑣𝑖/𝑣1) =

{
 
 

 
 

2𝑘

2𝑘 + 1
, if    𝑖 = 1.

2𝑘 + 2

2𝑘 + 1
, if    𝑖 =

𝑛 + 2

2
.

1,                    otherwise

 

Hence 𝑑(𝑣𝑖/𝑣1) remains same for 𝑛 − 2 vertices except 

for 𝑖 = 1, 
𝑛

2
+ 1. Let 𝑣𝑗 ≠ v1 be any other vertex. Then 

𝑑(𝑣i/𝑣𝑗) is the same for 𝑛 − 2 vertices except for 𝑖 = 𝑗, 

𝑗 +
𝑛

2
 which implies  𝛤(𝑣i/{𝑣1, 𝑣𝑗}) remains same for 𝑛 −

4 vertices. Continuing in a similar way minimum 
𝑛

2
 

number of vertices are required to rational resolve 𝐶𝑛
𝑘. 

Thus any subset of 𝑉(𝐶𝑛
𝑘) containing 

𝑛

2
 vertices can 

rational resolve 𝐶𝑛
𝑘 and is minimal. Hence 𝑟𝑚𝑑(𝐶𝑛

𝑘) =
𝑛

2
. 

Theorem 3.3. For the graph 𝐶𝑛
𝑘 with 𝑘 =

𝑛−2

2
, 

i. 𝑙𝑟𝑟(𝐶n
𝑘) = 𝑢𝑟𝑟(𝐶n

𝑘) =
𝑛

2
. 

ii. 𝑙𝑟𝑟∗(𝐶n
𝑘) = 𝑢𝑟𝑟∗(𝐶n

𝑘) =
𝑛

2
. 

iii. 𝑙𝑅r(𝐶n
𝑘) = 𝑢𝑅r(𝐶n

𝑘) =
𝑛

2
+ 1. 

iv. 𝑙𝑅𝑟∗(𝐶n
𝑘) = 𝑢𝑅𝑟∗(𝐶𝑛

𝑘) = 0. 

Proof.  Let   𝑘 =
𝑛−2

2
. 

i. From Lemma 3.2, any subset of 𝑉(𝐶𝑛
𝑘) containing 

𝑛

2
 

vertices can rational resolve 𝐶𝑛
𝑘 and is minimal with 

minimum and maximum cardinality. Hence 

𝑙𝑟𝑟(𝐶𝑛
𝑘) = 𝑢𝑟𝑟(𝐶n

𝑘) =
𝑛

2
. 

ii. Any subset of 𝑉(𝐶𝑛
𝑘) containing 

𝑛

2
 number of 

vertices are required to rational resolve 𝐶𝑛
𝑘.  So for 

any subset S of 𝑉(𝐶𝑛
𝑘) containing 

𝑛

2
 elements, 𝑆 will 

also contain 
𝑛

2
 vertices. Therefore both 𝑆 and 𝑆 are 𝑟𝑟  

sets with minimum and maximum cardinality and 

hence 𝑙𝑟𝑟∗(𝐶𝑛
𝑘) =  𝑢𝑟𝑟∗(𝐶𝑛

𝑘) =
𝑛

2
. 

iii. From Lemma 3.2, any rr  set has to contain minimum 
𝑛

2
 elements, if 𝑆 contain 

𝑛

2
+ 1 elements, then 𝑆 will 

contain less than 
𝑛

2
  𝑒lements which imply 𝑆 is an 𝑟𝑟  

set a𝑛𝑑 𝑆 is not an 𝑟𝑟  set. Therefore 𝑆 is a minimal 

𝑅𝑟  set with minimum and maximum cardinality and 

hence 𝑙𝑅r(𝐶𝑛
𝑘) = 𝑢𝑅r(𝐶𝑛

𝑘) =
𝑛

2
+ 1. 

iv. From Lemma 3.2, a subset of 𝑉(𝐶𝑛
𝑘) containing 

minimum 
𝑛

2
 elements is an 𝑟𝑟  set. Hence for any 

subset 𝑆 of  𝑉(𝐶𝑛
𝑘), either 𝑆 or 𝑆 contain minimum 

𝑛

2
 

elements, so that, 𝑆 or 𝑆 is an 𝑟𝑟  set. Therefore, there 

exists no 𝑅𝑟
∗ set for 𝐶𝑛

𝑘, which imply l𝑅𝑟∗(𝐶𝑛
𝑘) =

𝑢𝑅𝑟∗(𝐶𝑛
𝑘) = 0. 

Lemma 3.4. For any integer 𝑛 ≥ 4,  𝑟𝑚𝑑(𝐶𝑛
2) =

{

𝑛 − 1   𝑖𝑓 𝑛 = 4, 5.
3 𝑖𝑓 n = 6.
2 𝑖𝑓 𝑛 > 6.

 

Proof.  Follows with various values of n. If 𝑛 = 4, 5, then 
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𝐶𝑛
2 = 𝐾𝑛, a complete graph and its rational metric 

dimension is discussed in [4]. If 𝑛 = 6, then 𝑛 = 2𝑘 + 2 

and hence by the Lemma 3.2, 𝑟𝑚𝑑(𝐶𝑛
2) =

𝑛

2
= 3. For 

𝑛 > 6, the following cases arises. 

Case i:  𝑛 ≡ 1, 2, 3(mod 4). 

In this case, 𝑑(𝑣1,  𝑣𝑖) ≤ 𝑑(𝑣1,  𝑣𝑖−1) and 𝑑(v1, 𝑣𝑖−2) <

𝑑(𝑣1,  𝑣𝑖) for every 𝑖 with 3 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ + 1, which imply 

𝑑(𝑣𝑖 𝑣1⁄ ) is strictly increasing for every 𝑖 with 2 ≤ 𝑖 ≤

⌈
𝑛

2
⌉ and by symmetry 𝑑(𝑣𝑖/𝑣1) = 𝑑(𝑣𝑛−(𝑖−2)/𝑣1) for 

every 𝑖 with 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉. Hence minimum two vertices 

are required to rational resolve 𝐶𝑛
2 and for any 𝑣𝑗, 𝑗 ≠ 1, 

𝛤( 𝑣𝑖/{𝑣1, 𝑣j}) is different for distinct 𝑣𝑖 ’𝑠. Therefore, 

𝑟m𝑑(𝐶𝑛
2) = 2. 

Case ii: 𝑛 ≡ 0(mod 4). 

In this case, 𝑑(𝑣1,  𝑣𝑖) ≤ 𝑑(𝑣1, 𝑣𝑖−1) and 𝑑(v1,  𝑣𝑖−2) < 

𝑑(𝑣1,  𝑣𝑖) for every 𝑖 with 3 ≤ 𝑖 ≤
𝑛

2
+ 1, which imply 

𝑑(𝑣i/ 𝑣1) is strictly increasing for every 𝑖 with 1 ≤ 𝑖 ≤
𝑛

2
.  By symmetry 𝑑(𝑣i/ 𝑣1) = 𝑑(v𝑛−(𝑖−2)/𝑣1) for every 𝑖 

with 2 ≤ 𝑖 ≤
𝑛

2
, which imply minimum two vertices are 

required to rational resolve 𝐶𝑛
2 and 𝑑(𝑣𝑛

2
v1⁄ )= 𝑑(𝑣𝑛

2
+1/

𝑣1)= 𝑑(𝑣𝑛
2
+2/𝑣1),  imply two adjacent vertices or 

diagonally opposite vertices of 𝐶𝑛  cannot resolve 𝐶𝑛
2. 

Also for any 𝑣𝑗, which is not adjacent to 𝑣1 in 𝐶𝑛  or not 

diagonally opposite to 𝑣1, 𝛤(𝑣𝑖/{𝑣1, 𝑣𝑗}) remains 

different for all vi’s. Therefore rmd(𝐶𝑛
2) = 2. 

Theorem 3.5. For the graph 𝐶𝑛
2, with 𝑛 > 6 𝑎𝑛𝑑 𝑛 ≡

1, 2, 3 (mod 4), 

i. 𝑙𝑟𝑟(𝐶𝑛
2) = 𝑢𝑟𝑟(𝐶𝑛

2) =  2. 

ii. 𝑙𝑟𝑟∗(𝐶𝑛
2) = 𝑢𝑟𝑟∗(𝐶𝑛

2) = 2. 

iii. 𝑙𝑅r(𝐶n
2) = 𝑢𝑅𝑟(𝐶𝑛

2) = 𝑛 − 1. 

iv. 𝑙𝑅𝑟∗(𝐶𝑛
2) = 𝑢𝑅r∗(𝐶𝑛

2) = 0. 

Proof:  When 𝑛 ≡ 1, 2, 3 (mod 4), 

i. Any subset of 𝑉(𝐶𝑛
2) containing two vertices can 

rational resolve 𝐶𝑛
2 and is minimal with minimum 

and maximum cardinality.  Hence 𝑙𝑟𝑟(𝐶𝑛
2) = 

𝑢𝑟𝑟(𝐶𝑛
2) = 2. 

ii. Any subset of 𝑉(𝐶𝑛
2) containing two vertices are 

required to rational resolve 𝐶𝑛
2, for any subset 𝑆 of 

𝑉(𝐶𝑛
2) with |𝑆| = 2, 𝑆 contain minimum two 

vertices. Therefore both 𝑆 and 𝑆 are 𝑟𝑟  sets and 

hence 𝑆 is minimal 𝑟r
∗ set with minimum and 

maximum cardinality, which imply 𝑙𝑟𝑟∗(𝐶n
2) =

𝑢𝑟𝑟∗(𝐶𝑛
2) = 2. 

iii. Any 𝑟r  set has to contain minimum two elements, if 

𝑆 contain 𝑛 − 1 elements then 𝑆 will contain only 

one element which imply 𝑆 is an 𝑟r  se𝔱 and 𝑆 is not 

an 𝑟r  set. Therefore 𝑆 is a minimal 𝑅𝑟  set with 

minimum and maximum cardinality and hence 

 𝑙𝑅𝑟(𝐶𝑛
2) =  𝑢R𝑟(𝐶𝑛

2) = 𝑛 − 2. 

iv. Any 𝑟𝑟  set has to contain minimum two elements, for 

any subset 𝑆 of 𝑉(𝐶𝑛
2),  either 𝑆 or 𝑆  contain 

minimum two vertices. Therefore there exists no 𝑅𝑟
∗ 

set for 𝐶𝑛
2 and hence 𝑙𝑅𝑟∗(𝐶𝑛

2) = 𝑢𝑅𝑟∗(𝐶𝑛
2) = 0. 

Theorem 3.5. For the graph 𝐶𝑛
2, with 𝑛 > 6 𝑎𝑛𝑑  𝑛 ≡

0(mod 4). 

i. 𝑙𝑟r(𝐶𝑛
2) = 𝑢𝑟𝑟(𝐶𝑛

2) = 2. 

ii. 𝑙𝑟𝑟∗(𝐶𝑛
2) = 𝑢𝑟𝑟∗(𝐶𝑛

2) = 2. 

iii. 𝑙𝑅𝑟(𝐶𝑛
2) = 𝑢𝑅𝛤(𝐶𝑛

2) = 𝑛 − 2. 

iv. 𝑙𝑅𝑟∗(𝐶𝑛
2) = 𝑢𝑅𝑟∗(𝐶𝑛

2) = 0. 

Proof:   When 𝑛 ≡ 0(mod 4). 

i. A subset of V(𝐶𝑛
2) containing two non adjacent 

vertices of 𝐶n or non-diagonal vertices can rational 

resolve 𝐶𝑛
2 and is minimal with minimum and 

maximum cardinality. Hence 𝑙𝑟𝑟(𝐶𝑛
2) = 𝑢𝑟𝑟(𝐶𝑛

2) =

2. 

ii. A subset of 𝑉(𝐶𝑛
2) containing two non adjacent 

vertices of 𝐶𝑛  or non diagonal vertices are required 

to rational resolve 𝐶𝑛
2, if 𝑆 is such a subset of 𝑉(𝐶n

2) 

then  𝑆 contain minimum two non adjacent vertices 

of 𝐶𝑛 . Therefore both 𝑆 and  𝑆 are 𝑟r  sets and hence 

𝑆 is a minimal 𝑟𝑟
∗ set with minimum and maximum 

cardinality which imply  𝑙𝑟r∗(𝐶n
2) = 𝑢𝑟𝑟∗(𝐶𝑛

2) = 2. 

iii. Any 𝑟𝑟  set has to contain minimum two non adjacent 

vertices of 𝐶𝑛  or non diagonal vertices, if 𝑆 =
{v1, 𝑣2,… , 𝑣n−2 }, which contain 𝑛 − 2 elements 

then 𝑆 = {𝑣𝑛−1, 𝑣𝑛}. Therefore 𝑆 is an 𝑟𝑟  set and 𝑆 is 

not an 𝑟𝑟  set and hence 𝑆 is a minimal 𝑅𝑟  set with 

minimum and maximum cardinality which imply 

𝑙𝑅𝑟(𝐶𝑛
2) = 𝑢𝑅r(𝐶𝑛

2) = 𝑛 − 2. 

iv. Any 𝑟𝑟  set has to contain minimum two non adjacent 

vertices of 𝐶𝑛  or non diagonal elements, for any 

subset 𝑆 of  𝑉(𝐶𝑛
2), either 𝑆 or 𝑆 can not contain 

such two vertices. Therefore there exists no 𝑅r
∗  set 

for 𝐶𝑛
2 and hence 𝑙𝑅r∗(𝐶𝑛

2) = 𝑢𝑅r∗(𝐶𝑛
2) = 0. 

Lemma 3.6. For any integer 𝑛 ≥ 6, 
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 rm𝑑(𝐶n
3) = {

𝑛 − 1 𝑖𝑓  𝑛 = 6, 7.
4 𝑖𝑓   𝑛 = 8.
2 𝑖𝑓   𝑛 > 8.

 

Proof:  If 𝑛 = 6, 7 then 𝐶𝑛
3 = 𝐾𝑛 and its rational metric 

dimension is discussed in [4]. If 𝑛 = 8 then   𝑛 = 2𝑘 +

2, hence by the Lemma 3.2, rmd(𝐶𝑛
3) =

𝑛

2
= 4. If 𝑛 = 9 

then rmd (𝐶𝑛
3) = 2 from Figure 1. If 𝑛 > 9 the following 

cases arises. 

Case i:  𝑛 ≡ l(mod 6) or 𝑛 ≡ 2(mod 6) or 𝑛 ≡
3(mod 6). 

Here 𝑑(𝑣𝑖/𝑣1) is strictly increasing and by symmetry 

𝑑(𝑣𝑖  / 𝑣1) = 𝑑(𝑣𝑛−(𝑖−2)/ 𝑣1) for every 𝑖 with 2 ≤ 𝑖 ≤

⌈
𝑛

2
⌉.  Hence minimum two vertices are required to rational 

resolve 𝐶𝑛
3 and for any 𝑣𝑗, 𝑗 ≠ 1, 𝛤(𝑣𝑖  /{𝑣1, 𝑣𝑗}) is 

different for all 𝑣𝑖′𝑠.  Therefore 𝑟𝑚𝑑(𝐶𝑛
3) = 2. 

 

Figure 1: The graph 𝐶9
3 and its 2-element rational metric 

basis. 

Case ii: 𝑛 ≡ 0, 4(mod 6). 

Here 𝑑(𝑣𝑖/𝑣1) is strictly increasing and by symmetry 

𝑑(𝑣𝑖/𝑣1) = 𝑑(𝑣𝑛−(𝑖−2) / 𝑣1) for every 𝑖 with 2 ≤ 𝑖 ≤
𝑛

2
 

which imply minimum two vertices are required to 

rational resolve 𝐶𝑛
3. Also 𝑑(𝑣n

2
 / 𝑣1) = 𝑑(𝑣n

2
+1 / 𝑣1) =

𝑑(𝑣𝑛
2
+2 / 𝑣1), which imply two adjacent vertices of 𝐶𝑛  or 

two diagonally opposite vertices can not resolve 𝐶𝑛
3. 

Hence for any 𝑣𝑗, which is not adjacent in 𝐶𝑛  or 

diagonally opposite to v1,  𝛤(𝑣𝑖/{𝑣1,𝑣𝑗}) is different for all 

𝑣𝜄’𝑠. Therefore 𝑟𝑚𝑑(𝐶𝑛
3) = 2. 

Case iii: 𝑛 ≡ 5(𝑚𝑜𝑑6). 

Here 𝑑(𝑣𝑖/𝑣1) is strictly increasing and by 

symmetry 𝑑(𝑣𝑖/𝑣1) = 𝑑(𝑣𝑛−(i−2)/𝑣1) for every 𝑖 with 

2 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ which imply minimum two vertices are 

required to rational resolve  𝐶𝑛
3. Also, (𝑣

⌊
𝑛

2
⌋
/𝑣1) =

𝑑(𝑣
⌊
𝑛

2
⌋+1 

/ 𝑣1) = 𝑑(𝑣⌊𝑛
2
⌋+2
 / 𝑣1) = 𝑑(𝑣⌊𝑛

2
⌋+3 

/ 𝑣1), which 

 imply vertices 𝑣i, 𝑣𝑗 of 𝐶𝑛  with |𝑗 − 𝑖| ≤ 2 can not 

resolve 𝐶𝑛
3. Hence for any 𝑣𝑗,  with 2 < |𝑗 − 1| < ⌊

𝑛

2
⌋, 

𝛤(𝑣𝑗/{𝑣1, 𝑣𝑗}) is different for all 𝑣𝑖 ’𝑠. Therefore 

𝑟𝑚𝑑(𝐶𝑛
3) = 2. 

Theorem 3.7.  For the graph 𝐶𝑛
3, with 𝑛 > 8, 

When 𝑛 = 9, 𝑛 ≡ 5 (mod 6) 

i. 𝑙𝑟𝑟(𝐶𝑛
3) = 2, 𝑢𝑟𝑟(𝐶𝑛

3) = 3. 

ii. 𝑙𝑟𝑟∗(𝐶𝑛
3) = 2,𝑢𝑟𝑟∗(𝐶𝑛

3) = 3. 

iii. 𝑙𝑅r(𝐶𝑛
3) = 𝑢𝑅r(𝐶𝑛

3) = 𝑛 − 2. 

iv. 𝑙𝑅𝑟∗(𝐶𝑛
3) = 𝑢𝑅𝑟∗(𝐶𝑛

3) = 0. 

when 𝑛 ≡ 1, 2, 3(mod 6), 

i. 𝑙𝑟𝑟(𝐶𝑛
3) = 𝑢𝑟𝑟(𝐶𝑛

3) = 2. 

ii. 𝑙𝑟𝑟∗(𝐶𝑛
3) = 𝑢𝑟𝑟∗(𝐶𝑛

3) = 2. 

iii. 𝑙𝑅𝑟(𝐶𝑛
3) = 𝑢𝑅𝑟  (𝐶𝑛

3) = 𝑛 − 1. 

iv. 𝑙𝑅𝑟∗(𝐶𝑛
3) = U𝑅𝑟∗(𝐶𝑛

3) = 0. 

and when 𝑛 ≡ 0, 4(mod 6), 

i. 𝑙𝑟𝑟(𝐶𝑛
3) = 2,𝑢𝑟𝑟(𝐶𝑛

3) = 3. 

ii. 𝑙𝑟𝑟∗(𝐶𝑛
3) = 2, 𝑢𝑟𝑟∗(𝐶𝑛

3) = 3. 

iii. 𝑙𝑅r(𝐶𝑛
3) = 𝑢𝑅𝑟  (𝐶n 

3 ) = n − 2. 

iv. 𝑙𝑅𝑟∗(𝐶𝑛
3) = 𝑢𝑅𝑟∗(𝐶𝑛

3) = 0. 

Proof.  Consider the following cases: 

Wℎ𝑒𝑛 𝑛 = 9, 𝑛 ≡ 5 (mod 6). 

i. Any subset { 𝑣i,  𝑣𝑗} of 𝑉(𝐶𝑛) with 2 < |𝑗 − 𝑖| < ⌊
𝑛

2
⌋ 

can resolve 𝐶𝑛
3 and is minimal with minimum 

cardinality which imply 𝑙𝑟𝑟(𝐶𝑛
3)= 2. Also 

{ 𝑣1, 𝑣2 , 𝑣3   } is a minimal 𝑟𝑟  set with maximum 

cardinality, which imply 𝑢𝑟𝑟(𝐶𝑛
3) = 3. 

ii. Any subset {𝑣i,  𝑣𝑗} of 𝑉(𝐶𝑛) with 2 < |𝑗 − 𝑖| < ⌊
𝑛

2
⌋ 

can resolve 𝐶𝑛
3, if 𝑆 is such a subset then 𝑆 contain 

two vertices which are at distance greater than 2, so 

that both 𝑆 and 𝑆 are 𝑟𝑟  set. Hence 𝑆 is a minimal 

𝑟𝑟
∗  set with minimum cardinality and therefore 

𝑙𝑟𝑟∗(𝐶𝑛
3) = 2. Also if 𝑆 = {𝑣1, 𝑣2, 𝑣3} then 𝑆 is an 𝑟𝑟  

set and hence 𝑆 is a minimal 𝑟𝑟
∗ set with maximum 

cardinality and hence 𝑢𝑟𝑟∗(𝐶𝑛
3) = 3. 

iii. If 𝑆 = {𝑣1, 𝑣2, … , 𝑣n−2} then 𝑆 = {𝑣n−1,  𝑣𝑛}, which 

imply 𝑆 is an 𝑟𝑟  set and 𝑆 is not an 𝑟𝑟  set. Therefore 

𝑆 is a minimal 𝑅𝑟  set with minimum and maximum 

cardinality and hence 𝑙𝑅r(𝐶𝑛
3) = 𝑢𝑅r(𝐶𝑛

3) = 𝑛 − 2. 
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iv. Any 𝑟𝑟  set has to contain minimum two vertices as 

mentioned in i, for a subset 𝑆 of 𝑉(𝐶𝑛
3), either 𝑆 or 𝑆 

can not contain such two vertices. Therefore there 

exists no 𝑅𝑟
∗ set for 𝐶n

3  and hence 𝑙𝑅𝑟∗(𝐶𝑛
3) =

𝑢𝑅𝑟∗(𝐶𝑛
3) = 0. 

When 𝑛 ≡ 1, 2, 3(mod 6). 

i. Any subset of 𝑉(𝐶𝑛
3) containing two vertices can 

rational resolve 𝐶𝑛
3 and is minimal with minimum 

and maximum cardinality. Hence 𝑙𝑟𝑟(𝐶𝑛
3) =

𝑢𝑟𝑟(𝐶n
3) = 2. 

ii. A subset of 𝑉(𝐶𝑛
3) containing two vertices is 

required to rational resolve 𝐶𝑛
3, for any subset 𝑆 of 

𝑉(𝐶𝑛
3) wíth |𝑆| = 2, 𝑆 contain minimum two 

vertices. Therefore 𝑆 is a minimal 𝑟𝑟
∗ set with 

minimum and maximum cardinality and hence 

𝑙𝑟𝑟∗(𝐶𝑛
3) = 𝑢𝑟𝑟∗(𝐶𝑛

3) = 2. 

iii. If a subset S of 𝑉(𝐶𝑛
3)  contain 𝑛 − 1 elements then 

𝑆 will contain only one element, which imply 𝑆 is an 

𝑟𝑟  set and 𝑆 is not an 𝑟𝑟  set. Therefore 𝑆 is a minimal 

𝑅𝑟  set with minimum and maximum cardinality and 

hence 𝑙𝑅𝑟(𝐶𝑛
3) = 𝑢𝑅𝑟(𝐶𝑛

3) = 𝑛 − 1. 

iv. For any subset 𝑆 of 𝑉(𝐶𝑛
3), both 𝑆 and 𝑆 can not 

contain less than two elements at the same time. 

Therefore there exists no 𝑅𝑟
∗ set for 𝐶𝑛

3 and hence 

𝑙𝑅r∗(𝐶𝑛
3) = 𝑢𝑅r∗(𝐶𝑛

3) = 0. 

When 𝑛 ≡ 0, 4(mod 6). 

i. A subset containing two non adjacent, non diagonal 

vertices of 𝐶𝑛  can rational resolve 𝐶𝑛
3 and is minimal 

with minimum cardinality. Hence 𝑙𝑟𝑟(𝐶𝑛
3) = 2. Also 

{𝑣1,  𝑣2, 𝑣𝑛
2
+1} is minimal 𝑟𝑟  set with maximum 

cardinality which imply 𝑢𝑟𝑟(𝐶𝑛
3) = 3. 

ii. A subset containing two non adjacent, non diagonal 

vertices of 𝐶𝑛  are required to rational resolve  𝐶n
3,  if 

𝑆 is such a subset then 𝑆 contain minimum two non 

adjacent vertices. Therefore both 𝑆 and 𝑆 are 𝑟𝑟  sets 

and hence 𝑆 is an 𝑟r
∗ set with minimum cardinality 

which imply 𝑙𝑟𝑟∗(𝐶𝑛
3) = 2. Also, if 𝑆 = {𝑣1,  𝑣2,

𝑣𝑛
2
+1} then 𝑆 contain minimum two non adjacent 

vertíces. Therefore both 𝑆 and  𝑆 are 𝑟𝑟  sets and 

hence 𝑆 is an 𝑟𝑟
∗ set with maximum cardinality 

which imply 𝑢𝑟𝑟∗(𝐶n
3) = 3. 

iii. Any 𝑟𝑟  set has to contain minimum two non 

adjacent, non diagonal vertices of 𝐶𝑛 , if 𝑆 =
{𝑣1, 𝑣2, … , 𝑣𝑛−2}, which contain 𝑛 − 2 elements 

then  𝑆 = {𝑣𝑛−1 , 𝑣𝑛}, which imply 𝑆 is an 𝑟𝑟  set 

and 𝑆 is not an 𝑟𝑟  set. Therefore 𝑆 is a minimal 𝑅r 

set with minimum and maximum cardinality and 

hence 𝑙𝑅𝑟(𝐶𝑛
3) = 𝑢𝑅𝑟(𝐶𝑛

3) = 𝑛 − 2. 

iv. For 𝑎ny subset  𝑜𝑓 𝑉(𝐶𝑛
3), either 𝑆 or 𝑆 contain non 

adjacent vertices. Therefore there exists no 𝑅𝑟
∗ set for 

𝐶𝑛
3 and hence   𝑙𝑅𝑟∗(𝐶𝑛

3) =  𝑢𝑅𝑟∗(𝐶𝑛
3) = 0. 

Theorem 3.8. For the power graph 𝐶𝑛
𝑘 with 𝑛 ≥

3𝑘,  𝑟𝑚𝑑(𝐶𝑛
𝑘) = 2. 

Proof. Let 𝑣1 be any vertex of 𝐶𝑛
𝑘. Then 𝑟𝑚𝑑(𝐶𝑛

𝑘) > 1 

as 𝑑(𝑣i / 𝑣1) = 𝑑(𝑣n−(i−2) / 𝑣1) for every 𝑖 with 2 ≤

𝑖 ≤ ⌈
𝑛

2
⌉. Also 𝑑(𝑣1,  𝑣i) = 𝑑(𝑣1,  𝑣𝑛−(𝑖−2)) = 1 for all  𝑖 

with 2 ≤ 𝑖 ≤ 𝑘 + 1, 𝑑(𝑣1, 𝑣𝑖) = 𝑑(𝑣1, 𝑣𝑛−(𝑖−2)) = 2 for 

all 𝑖 with 𝑘 + 2 ≤ 𝑖 ≤ 2𝑘 + 1. So, in general 𝑑(𝑣1,

𝑣𝑖) = 𝑑(𝑣1, 𝑣𝑛−(𝑖−2)) = ⌊
𝑛

2𝑘
⌋ for all 𝑖 with (⌊

𝑛

2𝑘
⌋ −

1)𝑘 + 2 ≤ 𝑖 ≤ ⌊
𝑛

2𝑘
⌋ 𝑘 + 1 and 𝑑(𝑣1, 𝑣i) = ⌊

𝑛

2𝑘
⌋ + 1 for 

all i with ⌊
𝑛

2𝑘
⌋ 𝑘 + 2 ≤ 𝑖 ≤ 𝑛 − ⌊

𝑛

2𝑘
⌋ 𝑘, so that 𝑛 −

2 ⌊
𝑛

2𝑘
⌋ 𝑘 − 1   vertices are at distance ⌊

𝑛

2𝑘
⌋ + 1 from the 

vertex 𝑣1, which results, for (⌊
𝑛

2𝑘
⌋ − 1) 𝑘 + 𝑛 −

2 ⌊
𝑛

2𝑘
⌋ 𝑘 − 1 = 𝑛 − (⌊

𝑛

2𝑘
⌋ + 1) 𝑘 − 1 = 𝑙(𝑠𝑎𝑦)  vertices 

𝑣𝑖  from  𝑣2, 𝑑(𝑣𝑖/𝑣1
 ) is strictly increasing. That is 

𝑑(𝑣i/𝑣1) is strictly increasing along with 𝑖 for every 𝑖 
with 2 ≤ 𝑖 ≤ 𝑙 + 1 and may be equal to that of the 

adjacent vertices for the remaining vertices. Choose 𝑣𝑘+1 

as the second vertex to rational resolve. Then by the 

similar argument 𝑑(𝑣𝑘+𝑖/𝑣𝑘+1) is strictly increasing 

along with 𝑖 for every 𝑖 with 2 ≤ 𝑖 ≤ 2 + 𝑙 − 1 where 

𝑘 + 2 + 𝑙 − 1 = 𝑘 + 1 + 𝑛 − (⌊
𝑛

2𝑘
⌋ + 1)𝑘 − 1 = 𝑛 −

⌊
𝑛

2𝑘
⌋ 𝑘 and ma𝑦 be equal to that of the adjacent vertices 

for the remaining vertices. Hence we have (𝑣𝑖/𝑣1) =
𝑑(𝑣𝑛−(𝑖−2)/𝑣1), but 𝑑(𝑣𝑖/𝑣𝑘+1) ≠ 𝑑(𝑣𝑛−(𝑖−2)/𝑣𝑘+1) for 

every 𝑖 with 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉which imply 𝛤(𝑣𝑖/{𝑣1, 𝑣 𝑘+1}) 

is different for all 𝑣𝑖 ’𝑠. Therefore rm𝑑(𝐶𝑛
𝑘) = 2. 

 

Figure 2: The  2-element rational metric basis of 𝐶18
4 . 
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§ 4. Conclusion and Scope 
In the study of rational metric dimension various classes 

of rational metric dimension of square and cube of a 

cycle is obtained. Also the rational metric dimension of 

power graph of a cycle 𝐶𝑛
𝑘 when 𝑛 = 2𝑘 + 2 and 𝑛 ≥ 3𝑘 

is obtained. 

The following are some interesting problems for further 

investigation. 

Problem 1: For the power graph 𝐶𝑛
𝑘 with 2𝑘 + 3 ≤ 𝑛 ≤

3𝑘 − 1, determine the value of  𝑟𝑚𝑑(𝐶𝑛
𝑘). 

Problem 2: For the power graph 𝐶𝑛
𝑘 with 𝑛 ≥ 2𝑘 + 3, 

determine the value of 𝑢𝑟𝑟(𝐶𝑛
𝑘), 𝑙𝑟𝑟∗(𝐶𝑛

𝑘), 

  𝑢𝑟𝑟∗(𝐶𝑛
𝑘),  𝑙𝑅𝑟 (𝐶𝑛

𝑘),   𝑢𝑅𝑟 (𝐶𝑛
𝑘),  𝑙𝑅𝑟∗(𝐶𝑛

𝑘),  𝑢𝑅𝑟∗(𝐶𝑛
𝑘). 
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