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Abstract 

Modern mathematical modeling problems, which exploit the power of supercomputers 

to the utmost extent, require increasing digit capacity of real numbers. However, the 

traditional representation of the reals is not efficient enough in the case of large bit 

sizes due to carry propagation. To make the arithmetic operations digit-wise parallel, 

several alternative numeration systems has been proposed and intensively studied 

during the last decades, starting with the seminal result by L. E. J. Brouwer a century 

ago. This paper continues this line of research and reveals some computational aspects 

of various number representation systems: exponential, recurrent (or linear), aliquot, 

overlaying exponential. Several classic results are generalized to broader classes of 

numeration systems. In particular, the representability theorem by A. Rényi for 

exponential systems is generalized to include convergent and nonconvergent 

numeration systems, uniform and non-uniform bases, and arbitrary sets of digits. As a 

contribution for practical use, a symmetric optimal positional overlay system is 

proposed, and an addition algorithm is described. 

Keywords: number representation, numeration systems, digit-wise parallel operations, 

effective computability. 

I. Introduction 

While computers and supercomputers are becoming 

more powerful and mathematical modeling 

requirements are increasing, the usual precision of 

real numbers at 32, 64, and even 128 bits feels 

insufficient. Sometimes digit capacity of up to 

thousands of bits is needed. Moreover, some 

mathematical problems require varying precision, 

which changes during calculations depending on the 

accuracy achieved. 

This raises the problem of efficiently implementing 

arithmetic operations with digit-wise parallelism. 

However, the conventional positional number 

systems have a serious drawback. Because of carry 

propagation, possibly along all digits, even a parallel 

digit-wise implementation of addition has the worst 

time proportional to the accuracy of the arguments. 

This is not just a practical problem. It arose from deep 

theoretical questions. As L. E. J. Brouwer discovered 

a century ago [4], the carry prohibits abstract 

computability of the operations on the real numbers 

(which we discuss and generalize in Section 5 below). 

He invented an overlaying numeration system that is 

free from this disadvantage due to redundancy of 

representation. This result was not used in practice 

and remained unexplored and undeveloped for 

decades. 

Nowadays there is a stream (not too large, but 

somewhat long and deep) of works studying 

algorithmic and algebraic aspects of various 

numeration systems (see [2, 9, 11, 18] and many in-

between). In this paper we focus on connections and 

interrelations of ‘almost standard’ commonly studied 

systems, as well as some more exotic ones, and 
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generalize the existing results with practical goals in 

mind. In particular, we compare exponential systems 

with the standard set of digits with additive systems 

where the sequence of bases is less regular, and with 

systems where the digits represent overlapping 

intervals rather than single values. 

The main contributions of this paper are as follows: 

1. Generalization of the representability theorem 

for non-standard positional numeration 

systems to include arbitrary number bases and 

arbitrary sets of digits (Section III). 

2. Generalization of the abstract computability 

theorem and its extension to aliquot number 

systems (Section V). 

3. Development of a symmetric optimal 

overlaying positional system along with the 

additive operation for it (Section VI). 

4. Further development of the notion of a 

recurrent numeration system that was 

introduced in our earlier paper [14] (Section 

VII). 

II. Main definitions 

Definition 2.1. By an additive numeration system we 

mean a sequence of bases 𝑏𝑖, −∞ < 𝑖 < +∞, 0 <

|𝑏𝑖| < |𝑏𝑖+1|, and a finite set of digits including 0. 

Each digits 𝑑 has its value 𝑉(𝑑), which is usually 

represented by its denotation (say 2, −2, 3/7, 𝜋). We 

require that the value of digit 0 is 0 and 𝑏0 = 1. The 

integer 𝑖 is called the position of 𝑑𝑖 and 𝑏𝑖. 

A representation of a real number is a sequence of 

digits where all digits with sufficiently large positions 

are 0. The maximal index of a non-zero digit is called 

the order of the representation. A representation is 

finite or precise if all 𝑖 with sufficiently large negative 

𝑖 are also 0. The minimal index −𝑖 of a non-zero digit 

is called the precision of a representation, and this 

representation is called the 𝑖-th approximation. 

A number 𝑥 is represented in an additive system if 

there exist an integer 𝑁 and a sequence of digits 𝑑𝑖 

such that 𝑑𝑖 = 0 for all 𝑖 > 𝑁 and 

∑

+∞

−∞

𝑏𝑖 ⋅ 𝑑𝑖 = 𝑥. 

We say that an additive system is convergent if for 

each 𝑥 > 0 there is a minimal index 𝑖 such that for 

each real 𝑦 such that |𝑦| > 𝑥, 𝑦 requires at least the 

order 𝑖 to be represented. 

To the best of our knowledge, all the systems studied 

in recent publications are convergent. 

Comments and examples on Definition 2.1. All 

traditional exponential systems are additive. Their 

bases are 𝛼𝑖 where |𝛼| > 1; their digits are usually 

subsequent integers from −𝑙 to 𝑢. They are studied in 

dozens of papers, e.g., [7, 9, 16]. 

Simple examples of ‘slightly non-standard’ 

exponential systems are systems of Frougny et al. [1, 

7]. They proved that a rational base is in almost all 

aspects worse than many algebraic irrational bases. 

For example, natural numbers other than 0 and 1 are 

not representable in such systems. But if we have a 

system with a rational base 𝑝/𝑞, 𝑝 > 𝑞, and digits 

0,
1

𝑞
,
2

𝑞
, ⋯ ,

𝑝 − 1

𝑞
 

then we can represent integer numbers in finite form 

and operations become a bit easier. 

A more general class of additive systems are 

recurrent systems where 

𝑏𝑛 = 𝑎1 ⋅ 𝑏𝑛−1 + ⋯ + 𝑎𝑘 ⋅ 𝑏𝑛−𝑘. 

In particular, the famous Fibonacci and 𝑛-bonacci 

systems [17] are recurrent ones. Such systems are 

called linear in works [8, 19]. (This name seems 

somewhat misleading as exponential systems are a 

simple special case of linear ones: 𝑏𝑛 = 𝛼 ⋅ 𝑏𝑛−1.) 

An example of a more exotic but interesting in some 

aspects additive system that is not linear, is the aliquot 

(or Egyptian) system (for Egyptian fractions see [5]) 

where 𝑏−𝑖 = 1/𝑖 and digits are 0,1. It is easily 

extended to a system for all (not only positive) real 

numbers by putting, e.g., 𝑏−𝑖 = (−1)𝑖/𝑖. Here we see 

that the sequence of numbers is not always correct, 

e.g., the sequence ⋯ ,1, ⋯ ,1,1,1,0,0, ⋯ ,0, ⋯ 
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represents nothing. Thus this system is not 

convergent. 

III. Representability theorem 

The following theorem generalizes to arbitrary 

additive systems the fundamental result by A. Rényi 

[18] for exponential systems. Its restriction to 

exponential systems also generalizes the Rényi’s 

theorem. 

The 𝑛-th span is the segment 

[min
𝑗

 𝑑𝑗 ⋅ 𝑏𝑛, max 
𝑗

𝑑𝑗 ⋅ 𝑏𝑛]. 

Its length is denoted by 𝑙𝑛. An (𝑛, 𝑗)-th gap 𝑔𝑛,𝑗 =

min𝑖|𝑑𝑗 − 𝑑𝑖| ⋅ 𝑏𝑛. 

Theorem 1 (Representability). If 

1. 𝑙𝑛 ⩾ 𝑏𝑛+1 − 𝑏𝑛, for all 𝑛, and 

2. 𝑔𝑛,𝑗 ⩽ 𝑏𝑛, for all 𝑛, 𝑗, 

then all 𝑥 ⩾ 0 are representable in our system. If 

additionally min𝑗  𝑑𝑗 ⩽ −1, then all real 𝑥 are 

representable. 

Proof. Step 1 (‘Integer’ part): For positive numbers, 

find the maximal ∑𝑛
𝑖=0 𝑑𝑖 ⋅ 𝑏𝑖 ⩽ 𝑥. For all real 

numbers, find the sum such that |∑𝑛
𝑖=0 𝑑𝑖 ⋅ 𝑏𝑖 − 𝑥| is 

minimal. In both cases, the search is finite. 

Step 2 (‘Fractional’ part): Let we have the 𝑖-th 

approximation ∑𝑛
−𝑖 𝑑𝑖 ⋅ 𝑏𝑖. Recursively find the next 

digit 𝑑−𝑖−1 by minimizing the distance of the partial 

representation from 𝑥. For positive numbers, find the 

miminal non-negative 𝑥 − ∑𝑛
−𝑖−1 𝑑𝑖 ⋅ 𝑏𝑖. For all real 

numbers, minimize |𝑥 − ∑𝑛
−𝑖−1 𝑑𝑖 ⋅ 𝑏𝑖|. 

Thus, we have an algorithm for sequentially getting 

the digits of the representation. □ 

IV. Overlaying 

The real numbers are inherently a completely 

different data type rather than integers or algebraic 

numbers. They are imprecise. They represent, from 

the physical and other natural sciences point of view, 

an infinite sequence of more and more precise 

measurements. So in practice there is no such real 

number as 2 (even the power in the Newton’s law of 

gravitation is 2 ± 𝜀). 

Algorithmically and constructively the real numbers 

are infinite effective sequences of embedded intervals 

[𝑎𝑛+1, 𝑏𝑛+1] ⊂ [𝑎𝑛, 𝑏𝑛], lim
𝑛→∞

(𝑏𝑛 − 𝑎𝑛) = 0. 

Interval representations of real numbers have recently 

been studied in [13, 20]. Here we consider a certain 

class of such representations and compare operations 

on them with operations on the conventional 

representations. 

Definition 2.2 (Exponential interval representations 

of real numbers with overlaying). Consider natural 

numbers with a base 𝜈 > 1, and an overlay 𝜀, 0 ⩽

𝜀 < 1. A system with overlays (𝜈, 𝜀) on a segment 

[𝑙𝑜𝑤, ℎ𝑖𝑔ℎ] is a system with 𝜈 digits defined as 

intervals produced by the equations below. Let 𝜉 be 

the length of our desired interval. Denote by 𝛿 the 

shift of a digit relatively to the previous one. Then we 

have 

 𝛿 = 𝜉 − 𝜖;  𝜖 = 𝜉 ⋅ 𝜀;  𝜈 ⋅ 𝛿 + 𝜉 = 1. (1) 

 𝜉 =
1

(𝜈−1)⋅(1−𝜀)+1
;  𝑙 = high − low. (2) 

The digits of this representation are as follows (Figure 

1): 

[0, 𝜉] = [0 ⋅ 𝛿, 0 ⋅ 𝛿 + 𝜉], 

[1 ⋅ 𝛿, 1 ⋅ 𝛿 + 𝜉], 

⸱⸱⸱ 

[(𝜈 − 1) ⋅ 𝛿, (𝜈 − 1) ⋅ 𝛿 + 𝜉] = [1 − 𝜉, 1]. 

The digits of the next position are descried by the 

similar fragmentation of each of the segments: 

 [low + 𝑖 ⋅ 𝛿 ⋅ 𝑙, low + (𝑖 ⋅ 𝛿 + 𝜉) ⋅ 𝑙]. 

 

 

Figure 1: Breaking into digits 
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Such a system was first proposed by L. E. J. Brouwer 

[4]. In his system 〈0,1,2,0.5〉, the segment [0,1] is 

divided into the overlaying segments [0,2/3], [1/

3,1], and so on. For example, [0,2/3] is divided into 

[0,4/9], [2/9,2/3]. The conventional systems are a 

special class of overlaying with the zero overlay. For 

example, if we add extra digits to these systems (e.g., 

digit −1 to the binary system obtaining the system 

with 3 digits 0,1, −1), they become similar to 

overlaying ones but with non-uniform partial 

overlays. 

V. Abstract computability 

The first question for a numeration system is which 

operations are computable in the system. Further 

questions concern the complexity of computation. 

To consider abstract computation issues uniformly 

and independently from a specific notion of an 

algorithm, we use the term effective operations to 

denote any class of operations conforming with 

Brouwer’s principle of finite information (in the 

special case of sequences, it is called Brouwer’s 

continuity principle; we remove unnecessary binding 

a specific data structure and rectify the idea of 

Brouwer): 

Finite information about the result is 

computed requiring only finite information 

about the arguments. 

and extending it with the following requirement of 

modern computer programming and science: 

External procedures are used as closed 

modules whose internal structure is 

inaccessible to the caller. 

There is a set of results that gradually became more 

and more general from 1920 to 2015 (at least). 

Here we consider the weakest requirement that a 

representation allows for effective computability of 

some operations. 

We say that a system is non-redundant if for all 𝑛, 𝑗 

we have 

𝑙𝑛 + 𝑔𝑛,𝑗 < 𝑏𝑛+1 + 𝑔𝑛,0. 

Theorem 2 (Brouwer, 1921 [4], Banach, Mazur, 

1937 [3], Uspensky, 1960 [22], 2014 [15], revised and 

generalized here). 

1. There is an effective transformation (Figure 2) 

of every convergent positional system with an 

effective sequence of bases and rational digits 

into the general constructive representation of 

the real numbers (a sequence of embedded 

segments). 

2. There is no effective transformation of the 

general representation into any convergent 

positional system. 

3. There is no algorithm of multiplication and 

division in any convergent positional system 

and no algorithm of addition for any non-

redundant system. 

4. For any effective function of real numbers 

there exists an algorithm to transform an 

arbitrary aliquot representation of arguments 

into an aliquot representation of the result. 

 

 

Figure 2: Effective transformation 

Sketch of proof.  

1. According to the definition of a convergent 

system, for each 𝜀 > 0 we can get a segment 

of length ⩽ 𝜀 included into the previous 

segments. 

2. If the segments are located near the place 

where one digit replaces another, we cannot 

determine this digit in general case. To  show 

this, we can use the so called method of 

provocation (Figure 3): wait until the 

procedure to compute a representation 

produces a digit and change the next 

approximation so that this digit is wrong. (A 

special case of this method is known as 

diagonalization. We prefer the more general 

term provocation from [12, 13], which hides 



 

July-August 2020 

ISSN: 0193-4120 Page No. 3430 - 3437 

 

 

3434 Published by: The Mattingley Publishing Co., Inc. 

the details of specific encoding and 

representation and emphasizes the main idea.) 

3. Analogously by the method of provocation. 

4. According to the results by W. Sierpinski 

[21], there is an algorithm for primitive 

recursive computation of the sum of various 

1/𝑛, 𝑛 > 𝑘, to obtain any rational number 

𝑝/𝑞 (Egyptian fraction). So after getting a 

new segment, we represent its lower bound 

extending the previous representation. ◻ 

 

 

Fig 3. The method of provocation 

Theorem 3 (revised and improved form of the 

theorem from [15]). In any overlaying system with 

overlay > 0, each effective function of real numbers 

is effectively computable. 

Sketch of proof. At each step, take the digit whose 

segment is greater than the segment of the standard 

result. To provide this, it suffices to wait until the 

length or partial result of the segment will be less than 

the current overlay.  ◻ 

Thus, overlaying systems have the advantage of 

aliquot systems without their disadvantages: the 

astronomically large length of representations for 

numbers 𝑥 with |𝑥| > 100 and the existence of 

meaningless representations. 

VI. Optimal overlaying system for parallel 

addition 

Theorem 4. In the overlaying system with 3 digits 

and overlay 𝜀 = 0.5 (which we refer to as the three-

halves system), we can compute 
𝑥+𝑦

2
 completely in 

parallel with memory 0 and anticipation 2 (the 

terminology from, e.g., [9]). 

Proof. For brevity, let the segment [0,1/2] be 

denoted by 0, [1/2,1] by 1, [1/4,3/4] by ∗. Table 1 

makes our statement clear. The current digit is the 

first, the lower digit is the second. Note that 01 = *0, 

*1 = 10. The notation 
0
∗

 , 
∗
1

 , 
1̅
0

 represents that both 

results are correct. We can optimize our algorithm 

taking the more convenient one. ◻ 

 

 

Table 1: The addition table for the three-halves 

system 

The three-halves system has some shortcomings. 

First, it represents only positive numbers. If we try to 

represent negative numbers by the common way:  

sign − before a denotation, then our number space 

becomes (−∞, 0] ∪ [0, +∞) which is not isomorphic 

constructively to real numbers ℝ. Consequently, the 

operation + is not computable for this representation: 

we cannot compute the sign of −0.0000 … and 

+0.0000 … based on finite information about 

arguments because some of the next digits can ruin 

the partial result. Secondly (A. Shvorin, private 

communication), although 𝑥 − 𝑦 is algorithmically 

computable when 𝑥 > 𝑦, there is no automaton for 

this computation as it cannot be local. 

These shortcomings are overcome in a symmetric 

three-halves system (proposed by A. Shvorin). Here 

we have 3 digits:  
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[−1,0] denoted by 1,  

[−0.5, 0.5] by 0,  

[0,1] by 1. 

Theorem 5. In the symmetric overlaying system with 

3 digits and overlay 𝜀 = 0.5, we can compute 
𝑥+𝑦

2
 and 

𝑥−𝑦

2
 completely in parallel with memory 0 and 

anticipation 2. 

Table 2 gives the method of addition. The method of 

subtraction is easily derived by inverting the second 

argument. Here 11 = 01, 11 = 01. 

 

 

Table 2: The addition table for the symmetric three-

halves system 

The symmetric system has one more pleasant 

property. One of the representations of a real number 

can be easily obtained from its usual binary 

representation: 

1. If a number does not start with [−]0, add a 

leading zero. 

2. Replace the leading zero by 01 for the positive 

number or by 01 for the negative one. 

3. For the positive number replace each other 0 

with 1. 

4. For the negative number replace each 1 with 

1, each other 0 with 1. 

Example. The number 0.1011 is transformed into 

01.1111111… The number −101 is transformed to 

0111. 1111… All representations are infinite 

because we have no precise numbers. 

VII. First steps to recurrent systems 

Consider recurrent systems for the integer numbers 

with 

𝑏𝑛 = 𝑎1 ⋅ 𝑏𝑛−1 + ⋯ + 𝑎𝑘 ⋅ 𝑏𝑛−𝑘 

and standard digits 0,1, ⋯ , 𝑎1 + 1 where for all 𝑖 𝑎𝑖 ⩾

𝑎𝑖+1, 𝑏0 = 1, 𝑏−𝑛 = 0 for all 𝑛. For such a system, 

there exists an algorithm of addition with memory 1 

and anticipation 𝑘, and this result cannot be improved 

by any number of extra digits (generalization of the 

result from [15]). 

But expanding a recurrent system to the real numbers 

is a hard problem. Recall [6] that each linear recurrent 

sequence is representable in the form 

∑

𝑘

𝑖=1

𝑞𝑖 ⋅ 𝑟𝑖
𝑘 

where 𝑟𝑖 are the roots of the characteristic equation 

𝑥𝑘 − 𝑥𝑘−1 ⋅ 𝑎1 − ⋯ − 𝑎𝑘 = 0. 

Thus, a recurrent representation can be extended to 

negative indices if all non-zero 𝑞𝑖 are positive and 

correspond to positive roots greater than 1. For such 

systems, the representability and abstract 

computability theorems hold if 

∑

𝑞𝑖≠0

𝑟𝑖 ⩽ max
𝑗

 𝑐𝑗 − min 
𝑗

𝑐𝑗. 

These systems are convergent. 

For example, recurrent sequence 𝑏𝑛 = 5𝑏𝑛−1 −

6𝑏𝑛−2 generates a recurrent representation system 

𝑏𝑛 =
1

2
⋅ (2𝑛 + 3𝑛) 

and digits 0,1, −1,2, −2. 

An open problem. Are there any good arithmetic 

algorithms for recurrent representation systems for 

the reals other than exponential ones? 
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Nevertheless, recurrent systems can be used, and are 

used, for fixed point numbers (e.g., the Fibonacci 

system). 

VIII. Conclusion 

Future post-silicon computers require new methods 

of programming and new representation of data. In 

this regard, it is necessary to study not only specific 

cases of number representation but their entire zoo. 

Recent investigations gave a lot of isolated results, 

and now it is time to combine them together, since the 

new computing will require different structures for 

processing by different processors (say, optic or 

biological). 

In this paper we presented the following main results: 

1. We generalized the representability theorem 

by A. Rényi [18] for exponential systems to 

include convergent and nonconvergent, 

uniform and non-uniform bases, and arbitrary 

sets of digits. Even the restriction of our 

theorem to exponential systems gives a more 

general result than the Rényi’s theorem. 

2. We also generalized and extended the abstract 

computability theorem to aliquot numeration 

systems. 

3. We described a novel algorithm of additive 

operations for symmetric optimal overlaying 

system. 

4. We outlined first steps to efficient algorithms 

for the recurrent numeration systems that we 

introduced in an earlier publication [14]. We 

also pointed to the open problem of 

construction of good recurrent representation 

systems for the real numbers. 
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