

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3119 Published by: The Mattingley Publishing Co., Inc.

A Model for Agricultural Ontology Storage and

Access Control Using HBase

Chao Liu
1
, QingDong

2
,Shaowen Li

1*

1
School of Information and Computer Science, Anhui Agricultural University, Hefei, Anhui, China.

2
 Anhui Academy of Agricultural Sciences, Hefei, Anhui, China

Article Info

Volume 83

Page Number: 3119 - 3127

Publication Issue:

July - August 2020

Article History

Article Received: 06 June 2020

Revised: 29 June 2020

Accepted: 14 July 2020

Publication: 25 July 2020

Abstract

As ontologies incorporate increasing amounts of knowledge, and knowledge that

spans multiple fields, there are increasing concerns relating to data privacy. This

paper focusses on the field of agricultural knowledge, introducing a role-based

model for access control and proposing a scalable HBase model for the storing

agricultural ontologies. Access control is achieved by adding role identifiers to the

row key. A series of query algorithms are presented and the model is tested by

running a series of experiments using different queries and data sets of different

sizes.

Keywords:Agricultural Ontology; Ontology Storage; Access Control; HBase;

RBAC

I. Introduction

With the rapid development of

knowledge sharing, information integration, and

web services, ontology hasattracted much

attention and has been a focus of research since

the 1990s. Ontology concerns the problem of

knowledge representation, organization, and

sharing through the formal description of

concepts, terms, and their relationships. Current

research in ontology is mainly domain ontology,

focusing the representation of knowledge within a

particular domain—most ontologies are aimed at a

specific domain or at the segmentation of

domains. Agricultural knowledge is a highly

productive knowledge class that can increase the

efficiency of the agricultural labor force and

therefore production capacity. For example,

ontologies have been constructed for fisheries,

foodsafety, nutrition, agriculture[1], prototype

biosecurity[2], potatoes[3], tea pests.[4] With the

successful application of cloud computing, big

data, and the internet of things in agriculture,

volumes of agricultural data are growing

geometrically. Extreme volumes of such data

provide a rich corpus of data for modeling

agricultural ontologies but they also cause

difficulties. The primary issue is with storing and

accessing such large volumes of ontological

knowledge. There are two main ways to store

ontological data:in filesor in a relational database.

When stored in files, ontologies can be directly

expressed in an ontology representation language,

which allows complete preservation of the

semantics. As the ontology service develops, these

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3120 Published by: The Mattingley Publishing Co., Inc.

files need to loaded into memory frequently and

this can adversely affect the efficiencyof the

service. Storage in a relational database can be

achieved using tools such as Jena. Once stored in

a relational database, data persistence helps to

make ontological operations efficient. However,

some semantics are lost when ontologies are

imported into relational databases because of

flaws in the structure itself.

HBase is a non-relational database, which allows

data to be stored in a flexible way that can

preserve complicated ontological semantics.

HBase is based on the Hadoop Distributed File

System (HDFS), which is a distributed

MapReduce framework that supports efficient

service of large volumes of ontological

knowledge. In current systems for ontology

storage in HBase, row keys are set to

differentcombinationsof triple elements and

ontologies are mostly decomposed into RDF

triples before storage. Abraham constructed three

HBase tables with subject, predicate, and object as

the row keys for each table, and other elements

were stored as row values.[5] Sun constructed six

HBase tables, including three tables that were

identical with those of Abraham and three

additional tables that had the combinations

predicate-subject, subject-object, and predicate-

object as row keys.[6] Papailiou also used three

tables, storing RDF triples under the row keys

subject-predicate, predicate-object and object-

subject.[7] Punnoose constructed three tables with

RDF triples as row keys, though in a different

order in each table.[8] The two major

considerations in the design of each of these

schemes were storage consumption and query

efficiency.HBase provides a solid foundation for

efficiently serving massive quantities of

ontological knowledge. But storage and efficiency

are not the only relevant concerns—as ontologies

represent more knowledge between and across

more fields, there are increasing concerns about

data privacy and security. Level-to-level

management is increasingly important, as is fine-

grained access control. This work focuses on the

large-scale storage of agricultural knowledge

using HBase, with an emphasis on both efficient

storage and secure role-based access control.

II. Storage model

1. HBase

HBaseis part of the Hadoop project. It is a

column-orientated store for unstructured data.

Data is stored in rows composed of row key, time

stamp, column family, column name, and column

value.[9] Row key is the primary key in HBase. It

is sorted lexicographically, and tables are searched

according to the order of the row key. Time stamp

is the time when the data was written and is used

to distinguish different versions of the same

column data. A column family is a group of

columns with similar features and can have

arbitrary size. The column name, prefixed by the

column family, gives the column position.

Column value is a string, and is stored in a cell

whose position is determined by the row key, time

stamp, column family, and column name. The

logical structure of HBase is shown in Table 1.

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3121 Published by: The Mattingley Publishing Co., Inc.

Table 1. HBase logical structure

Row

key

Time

stamp

Column family: f1 Column family: f2

Column

name

Column

value

Column

name

Column

value

Column

name

Column

value

k1
t1 f1:n11 v1-11

t2 f1:n22 v1-22

k2

t3 f1:n31 v1-31 f2:n31 v1-31

t4 f1:n42 v1-42

t5 f1:n52 v1-52 f2:n31 v1-51

2. RBAC

Role-based access control (RBAC) is a flexible

model for access control that uses roles to match

users with appropriate permissions. Each role is

defined by a set of requirements and is granted

certain access permissions. The user acquires

permissions though being assigned roles. This

model makes the management of user access

permissions more convenient.[10]

Most RBAC systems are currently based on

RBAC96, which is built around the concepts of

user, role, session, and access permission. The

relationship between roles and users is many-to-

many, as is the relationship between roles and

access permissions. The RBAC model is defined

as follows[11]:

(1) U is a set of users, R is a set of roles, S is a set

of sessions, and P is a set of access permissions;

(2) RH is the role hierarchy;

(3) PA is the access permission assignment;

(4) UA is the user assignment;

(5) users: S→U is the mapping of a session to a

user;

(6) roles: S→2
R
 is the mapping of a session to a

role set;

(7) permissions: R→2
P
 is the mapping of a role to

an access permission set.

3. Agricultural ontology storage and

access control model

The RDF triple is a basic ontological structure and

ontologies represented by OWL

(Web Ontology Language) can be converted into

the RDP triple representation. This study proposes

an HBase-based storage and access control model

for agricultural ontologies represented in this way.

The RDF triple is defined as <s, p, o>, where s is

the subject, p is the property, and o is the object. s

and o are concepts and can be taken as nodes. p is

a relation between concepts and can be taken as a

line connecting two nodes. Two HBase tables

SR_P_O and OR_P_S, representing the RDF,

were designed according to the characteristics of

the agricultural knowledge relevant to this study.

They are shown in Tables 3 and 4.

Table 2 shows the structure of the SR_P_O table.

The row key is composed of s and r. r represents a

role, which is set by the access control and

determines whether the data can be accessed by a

user possessing a particular role. If the role as a

property is placed in the column family, the table

has to be gradually scanned to determine whether

the knowledge can be accessed by the role.

Therefore, placing the role in the row key can

increase the efficiency. For example, the row key

in the second row shows that s2 can be accessed

by r1. Similarly, in the third row, s3 can be

accessed by r1 but not r3. If there are no r’s in the

row key then the subject cannot be accessed. The

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3122 Published by: The Mattingley Publishing Co., Inc.

column family property has two columns: name

and value. Name represents the property of the

RDF triple and value represents the object of RDF

triple as the property value. The storage structure

in the OR_P_S table is similar to that of SR_P_O

table. For the RDF triple <s3, p2, o2>, s3 can be

accessed by r2 and r3 (see Table 2) whereas o2 can

only can be accessed by r2 (see Table 3).

Furthermore, r3 can access s3 but not the

corresponding property value.

Table 2.Storage structure for SR_P_O table

Row key Time stamp
Column family: property

Name Value

s1
t1 property: p1 o1

t2 property: p2 o2

s2, r1

t3 property: p1 o3

t4 property: p3 o1

t5 property: p4 o4

s3, r2, r3
t6 property: p2 o2

t7 property: p3 o3

Table 3. Storage structure for the OR_P_S table

Row key Time stamp
Column family: property

Name Value

o1, r1
t1 property: p1 s1

t4 property: p3 s2

o2, r2
t2 property: p2 s1

t6 property: p2 s3

o3, r1, r2, r3
t3 property: p1 s2

t7 property: p3 s3

o4, r1 t5 property: p4 s2

The HBase storage model proposed in this work

can satisfy seven of the triple pattern query modes

shown in Table 4. In each pattern, s, p, and, o

represent constants and ?s, ?p, and ?o represent

variables. The pattern (?s, p, ?o), in which

property is the only condition, is relatively rare.

To satisfy this pattern, the storage model would

need to have a table with property as the row key

and this would increase the space cost of storage.

If this pattern is requested, then either of the two

tables can queried as a full table.

Table 4. Relationships between HBase tables and

triple patterns

Triple pattern
HBase table

SR_P_O OR_P_S

(s, p, o) √ √

(s, p, ?o) √

(s, ?p, o) √ √

(?s, p, o) √

(s, ?p, ?o) √

(?s, p, ?o) √ √

(?s, ?p, o) √

(?s, ?p, ?o) √ √

III. SPARQLquery algorithms

1. Access control and matching triple

pattern algorithm

The access control and matching triple pattern

algorithm is used to judge whether the input triple

pattern matches the HBase triple pattern and

access is allowed.

Algorithm 1 A&M_TP

Input: t = (ts, tp, to) is the input triple pattern, r is

the user’s role, ht= (hs, hp, ho) is the HBase triple

pattern, and ra is a role array of ht

Output: “Access denied”, True or False

if (r isn’t in ra)

 then return “Access denied”

else

{

 if (t.ts is a variable || t.ts== ht.hs) && (t.tp is a

variable || t.tp == ht.hp) && (t.to is a variable ||

t.to == ht.ho)

 then return True

 else return False

}

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3123 Published by: The Mattingley Publishing Co., Inc.

2. Triple pattern query algorithms

The triple pattern query algorithms match the

eight triple patterns. Algorithm 2 is the main

algorithm for a single triple pattern query and is

the entrance query algorithm.

Algorithm 2 Q_TP

Input: t = (ts, tp, to) is the input triple pattern, and

r is the user’s role

Output: Result is the set of triple patterns that

match t

if (t.ts isn’t a variable)

then Result = QSR_P_O(t, r)

else if (t.to isn’t a variable)

then Result = QOR_P_S (t, r)

else

Result = TSR_P_O (t, r) or Result = TOR_P_S (t,

r)

In Algorithm 2, if the subject of the triple pattern t

isn’t a variable, then result is obtained by the

QSR_P_O algorithm. If the object of the triple

pattern t isn’t a variable, then result is obtained by

the QOR_P_S algorithm. If only the property of

triple pattern t isn’t a variable, then result is

obtained through traversal of the SR_P_O or

OR_P_S table.

Algorithm 3 QSR_P_O

Input: t=(ts, tp, to) is the input triple pattern, and r

is the user’s role

Output: Result is the set of triple patterns that

match t

Result = 

Find rows in the SR_P_O table whose row key

contains t.ts, to generate a candidate set cs.

foreach (row: cs)

{

hti= (hsi, hpi, hoi)is a triple pattern that row i

represents, hti.hsi is the subject of row i in the row

key, hti.hpi is the property name of row i, and hti.

hoi is the property value of row i

rai is a role array of rowiin row key

 if (A&M_TP(t, r, hti, rai) == True)

 then Result = Result + t

}

returnResult

Algorithm 4 QOR_P_S

Input: t=(ts, tp, to) is the input triple pattern, and r

is the user’s role

Output: Result is the set of triple patterns that

match t

Result = 

Find rows of the OR_P_S table whose row key

contains t.to, to generate a candidate set cs.

foreach (row: cs)

{

hti= (hsi, hpi, hoi) is a triple pattern that rowi

represents, hti.hsi is the property value of row i,

hti.hpi is the property name of row i, and hti. hoi is

the object of rowiin row key

rai is a role array of rowiin row key

 if (A&M_TP(t, r, hti, rai) == True)

 then Result = Result + t

}

returnResult

Algorithm 5 TSR_P_O

Input: t=(ts, tp, to) is the input triple pattern, and r

is the user’s role

Output: Result is the set of triple patterns that

match t

foreach (row: SR_P_O)

{

hti= (hsi, hpi, hoi)is a triple pattern that rowi

represents, hti.hsi is the subject of row iin the row

key, hti.hpi is the property name of row i, and hti.

hoi is the property value of row i

rai is a role array of rowiin row key

 if (r is in rai&&t.tp == hti.hpi)

 then Result = Result + t

}

return Result

Algorithm 6 TOR_P_S

Input: t=(ts, tp, to) is the input triple pattern, and r

is the user’s role

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3124 Published by: The Mattingley Publishing Co., Inc.

Output: Result is the set of triple patterns that

match t

foreach (row: OR_P_S)

{

hti=(hsi, hpi, hoi)is a triple pattern that rowi

represents, hti.hsi is the property value of row i,

hti.hpi is the property name of row i, hti. hoi is the

object of row iin the row key

rai is a role array of rowiin row key

 if (r is in rai&&t.tp == hti.hpi)

 then Resul t= Result + t

}

return Result

According to the ts or to of the input triple pattern

t, algorithms 3 and 4 first obtain rows that are

eligible by indexing the row key and then

matching with t. Algorithms 5 and 6 directly

match t by traversing either the SR_P_O or

OR_P_S table. Although algorithms 5 and 6 are

slower than algorithms 3 and 4, they are not

commonly needed in agricultural ontology

services. Omitting a table whose row key contains

property reduces the required storage space by one

third.

IV. Experiment and discussion

1. Experimental data

Experimental data concerned knowledge of tea

pests. Five data sets were generated using a

process similar to LUBM. The data profile is as

follows:

In each ontology

 every atom is assigned by 1-4 roles, which

are r1, r2, r3 and r4

In each order

 3-9 families are subclasses of the order

In each family

 2-7 pests are subclasses of the family

 every pest causes damage in 1-4 ways,

which are plant-sucking, root-eating, leaf-

eating, and tree-drilling

 every pest harms 1-4 of the tea parts,

which are leaf, flower, bud, and root

 every pest is eaten by 1-5 predators

 every pest lives in 1-4 tea areas

 every pest is prevented using 1-4 methods,

which are agricultural prevention, chemical

prevention, physical prevention and

biological prevention

The experiment used three data sets that were

generated according to this profile. The sizes of

the data sets are shown in Table 5.

Table 5. Data sets

Data set Orders RDF triples Size

D1 100 115362 7.1M

D2 7500 8409835 467.9M

D3 20000 22936721 1.26G

D4 50000 55321649 3.02G

D5 75000 86326693 4.86G

2. Experimental environment

The experiment was carried out using

virtualization software (VMware vSphere

Hypervisor (ESXi) 6.0.0). The technical

specification of the server was as follows: Lenovo

T100 with a 3.10 GHz Intel(R) Xeon(R) E31225

quad-core processor, 20 G memory, and 1T hard

disc. Four virtual servers were deployed on this

machine, each with a vCPU, 4G memory, and

100G hard disc. All servers ran Ubuntu 14.04

LTS, Hadoop 1.1.2, HBase 0.94.27, and Oracle

JDK 1.7. One of the four virtual servers was

configured as a master server, on which

NameNode and JobTracker were installed. The

others were slave servers running DataNode and

TastTracker.

3. Results and Discussion

The experiment consisted of the following five

queries directed to HBase:

Q1

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3125 Published by: The Mattingley Publishing Co., Inc.

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#>

SELECT *

WHERE

{?X?Y?Z}

Q2

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#>

SELECT ?X

WHERE

{?X rdf:typete:role}

Q3

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#>

SELECT ?X

WHERE

{?X rdf:typete:role.

 ?X te:assigned te:pest1}

Q4

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#>

SELECT ?X

WHERE

{?X rdf:typete:pest.

 ?X te:harmte:flower}

Q5

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#>

SELECT ?X, ?Y, ?Z

WHERE

{?X rdf:typete:role.

 ?Y rdf:typete:pest.

 ?Z rdf:typete:area.

?X te:assigned ?Y.

?Y te:live ?Z.

?X te:assigned ?X}

Q6

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#>

SELECT ?X, ?Y

WHERE

{?X rdf:typete:role.

 ?Y rdf:typete:pest.

 ?X te:assigned ?Y.

 ?Y te:damagete:leaf_eating}

Each query was ran five times on each of the

databases, and the average response time was

calculated. The average response times in

MapReduce mode was compared with those

obtained in stand-alone mode, as shown in Fig 1.

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3126 Published by: The Mattingley Publishing Co., Inc.

Fig 1. Comparison of query times between stand-alone and MapReduce modes. D1-D5 are data sets of

increasing size.

Q1 and Q2 are queries based on a triple and are

satisfied by a very large number of results. Q1

failed on datasets D1 and D2, and Q2 failed on

dataset D2 because the number of results was too

large. The MapReduce query times for Q1 and Q2

were shorter than in stand-alone but not very

different.

The first clause in Q3 and Q4 defines the type of

the variable. The second clause links to the first

clause through the subject and its object is the main

condition of the query. The query time in stand-

alone mode increases more quickly than in

MapReduce mode, indicating the scalability of

MapReduce mode for Q3 and Q4.

July – August 2020
ISSN: 0193-4120 Page No. 3119 - 3127

3127 Published by: The Mattingley Publishing Co., Inc.

Q5 is a query with multiple variables and triples. It

is a complex query because of the complex

connection between the clauses, the multiple kinds

of logical relationships and the many alternative

times of shared variables. This is the most complex

query and the time in stand-alone mode grows

fastest.

Q6 has two variables and four clauses. The last

clause is the main condition for the query and so the

alternative times of the shared variables are less

than Q5. This improves efficiency. The query time

in MapReduce mode grows more slowly than in

stand-alone mode.

In summary, the model proposed in this paper

performs better that the common stand-alone

method and is suitable for handling large-scale

ontologies. Provided there are sufficient virtual

servers, the model is highly scalable.

V. Conclusions

This paper proposes a model for agricultural

ontology storage and access control based on

Hbase, which not only successfully implements

access control by setting a role property, but is also

suitable for large-scale storage and query.

Experimental ontologies were generated according

to a set profile that is similar to LUBM. Six kinds

of queries were designed and run in both

MapReduce and stand-alone modes. The results of

these experiments demonstrated the scalability of

the proposed model.

Acknowledgments.ShaowenLi is thecorresponding

author. This research was supported by Philosophy

and Social Sciences Planning Projectof Anhui,

China (GRANT_NUMBER: AHSKF2019D037).

REFERENCES

[1] Kawtrakul A (2012) Ontology engineering and

knowledge services for agriculture domain.

Journal of Integrative Agriculture11(5):741-751.

[2] Lauser B, Keizer J (2002) A comprehensive

framework for building multilingual domain

ontologies: creating a prototype biosecurity

ontology. In Proceedings of the International

Conference on Dublin core and Metadata

Applications, Germany, Dublin

[3] Haverkort A J, Top J L (2011) The potato

ontology: delimitation of the domain, modeling

concepts, and prospects of performance. Potato

Research 54(2):119-136.

[4] Sun J, Li S W, Zhang L, Liu C, Zhao H Y, Yang

JG. (2013)

Ontology constructionin tea pest domain. In

Proceedings of the 7th Chinese Semantic Web

Symposium and 2nd Chinese Web Science

Conference (CSWS 2013), China, Shanghai

[5] Abraham J, Brazier P, Chebotko A, et al (2010)

Distributed Storage and Querying Techniques

for a Semantic Web of Scientific Workflow

Provenance. In Proceedings of the IEEE

International Conference on Services

Computing(SCC 2010), USA, Miami

[6] Sun J, Jin Q (2010) Scalable RDF store based

on HBase and MapReduce. In Proceedings of

the 3rd International Conference on Advanced

Computer Theory and Engineering(ICACTE),

China, Chengdu

[7] Papailiou N, Konstantinou I, Tsoumakos D, et

al. (2012) H2RDF: adaptive query processing on

RDF data in the cloud. In Proceedings of the

21st International Conference on World Wide

Web, France, Lyon

[8] Punnoose R, Crainiceanu A, Rapp D (2012)Rya:

a scalable RDF triple store for the clouds. In

Proceedings of the 1st International Workshop

on Cloud Intelligence, Turkey, Istanbul

[9] Lee H, Shao B, Kang U (2015) Fast graph

mining with HBase. Information Sciences

315(C):56-66.

[10] Cruz J P, Kaji Y, Yanai N (2016) RBAC-SC:

Role-based Access Control using Smart

Contract. IEEE Access4:1-12.

[11] N. Damasceno C D, C. Masiero P, Simao A

(2018) Similarity testing for role-based access

control systems. Journal of Software

Engineering Research and Development 6:1-37.

