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Abstract 

As ontologies incorporate increasing amounts of knowledge, and knowledge that 

spans multiple fields, there are increasing concerns relating to data privacy. This 

paper focusses on the field of agricultural knowledge, introducing a role-based 

model for access control and proposing a scalable HBase model for the storing 

agricultural ontologies. Access control is achieved by adding role identifiers to the 

row key. A series of query algorithms are presented and the model is tested by 

running a series of experiments using different queries and data sets of different 

sizes. 

Keywords:Agricultural Ontology; Ontology Storage; Access Control; HBase; 

RBAC 

 

I. Introduction 

With the rapid development of 

knowledge sharing, information integration, and 

web services, ontology hasattracted much 

attention and has been a focus of research since 

the 1990s. Ontology concerns the problem of 

knowledge representation, organization, and 

sharing through the formal description of 

concepts, terms, and their relationships. Current 

research in ontology is mainly domain ontology, 

focusing the representation of knowledge within a 

particular domain—most ontologies are aimed at a 

specific domain or at the segmentation of 

domains. Agricultural knowledge is a highly 

productive knowledge class that can increase the 

efficiency of the agricultural labor force and 

therefore production capacity. For example, 

ontologies have been constructed for fisheries, 

foodsafety, nutrition, agriculture[1], prototype 

biosecurity[2], potatoes[3], tea pests.[4] With the 

successful application of cloud computing, big 

data, and the internet of things in agriculture, 

volumes of agricultural data are growing 

geometrically. Extreme volumes of such data 

provide a rich corpus of data for modeling 

agricultural ontologies but they also cause 

difficulties. The primary issue is with storing and 

accessing such large volumes of ontological 

knowledge. There are two main ways to store 

ontological data:in filesor in a relational database. 

When stored in files, ontologies can be directly 

expressed in an ontology representation language, 

which allows complete preservation of the 

semantics. As the ontology service develops, these 



 

July – August 2020 
ISSN: 0193-4120 Page No. 3119 - 3127 

 
 

3120 Published by: The Mattingley Publishing Co., Inc. 

files need to loaded into memory frequently and 

this can adversely affect the efficiencyof the 

service. Storage in a relational database can be 

achieved using tools such as Jena. Once stored in 

a relational database, data persistence helps to 

make ontological operations efficient. However, 

some semantics are lost when ontologies are 

imported into relational databases because of 

flaws in the structure itself. 

HBase is a non-relational database, which allows 

data to be stored in a flexible way that can 

preserve complicated ontological semantics. 

HBase is based on the Hadoop Distributed File 

System (HDFS), which is a distributed 

MapReduce framework that supports efficient 

service of large volumes of ontological 

knowledge. In current systems for ontology 

storage in HBase, row keys are set to 

differentcombinationsof triple elements and 

ontologies are mostly decomposed into RDF 

triples before storage. Abraham constructed three 

HBase tables with subject, predicate, and object as 

the row keys for each table, and other elements 

were stored as row values.[5] Sun constructed six 

HBase tables, including three tables that were 

identical with those of Abraham and three 

additional tables that had the combinations 

predicate-subject, subject-object, and predicate-

object as row keys.[6] Papailiou also used three 

tables, storing RDF triples under the row keys 

subject-predicate, predicate-object and object-

subject.[7] Punnoose constructed three tables with 

RDF triples as row keys, though in a different 

order in each table.[8] The two major 

considerations in the design of each of these 

schemes were storage consumption and query 

efficiency.HBase provides a solid foundation for 

efficiently serving massive quantities of 

ontological knowledge. But storage and efficiency 

are not the only relevant concerns—as ontologies 

represent more knowledge between and across 

more fields, there are increasing concerns about 

data privacy and security. Level-to-level 

management is increasingly important, as is fine-

grained access control. This work focuses on the 

large-scale storage of agricultural knowledge 

using HBase, with an emphasis on both efficient 

storage and secure role-based access control. 

II. Storage model 

1. HBase 

HBaseis part of the Hadoop project. It is a 

column-orientated store for unstructured data. 

Data is stored in rows composed of row key, time 

stamp, column family, column name, and column 

value.[9] Row key is the primary key in HBase. It 

is sorted lexicographically, and tables are searched 

according to the order of the row key. Time stamp 

is the time when the data was written and is used 

to distinguish different versions of the same 

column data. A column family is a group of 

columns with similar features and can have 

arbitrary size. The column name, prefixed by the 

column family, gives the column position. 

Column value is a string, and is stored in a cell 

whose position is determined by the row key, time 

stamp, column family, and column name. The 

logical structure of HBase is shown in Table 1. 
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Table 1. HBase logical structure 

Row 

key 

Time 

stamp 

Column family: f1 Column family: f2 

Column 

name 

Column 

value 

Column 

name 

Column 

value 

Column 

name 

Column 

value 

k1 
t1 f1:n11 v1-11     

t2   f1:n22 v1-22   

k2 

t3 f1:n31 v1-31     f2:n31 v1-31 

t4   f1:n42 v1-42   

t5     f1:n52 v1-52 f2:n31 v1-51 

 

 

 

 

2. RBAC 

Role-based access control (RBAC) is a flexible 

model for access control that uses roles to match 

users with appropriate permissions. Each role is 

defined by a set of requirements and is granted 

certain access permissions. The user acquires 

permissions though being assigned roles. This 

model makes the management of user access 

permissions more convenient.[10] 

Most RBAC systems are currently based on 

RBAC96, which is built around the concepts of 

user, role, session, and access permission. The 

relationship between roles and users is many-to-

many, as is the relationship between roles and 

access permissions. The RBAC model is defined 

as follows[11]: 

(1) U is a set of users, R is a set of roles, S is a set 

of sessions, and P is a set of access permissions; 

(2) RH is the role hierarchy; 

(3) PA is the access permission assignment; 

(4) UA is the user assignment; 

(5) users: S→U is the mapping of a session to a 

user; 

(6) roles: S→2
R
 is the mapping of a session to a 

role set; 

(7) permissions: R→2
P
 is the mapping of a role to 

an access permission set. 

3. Agricultural ontology storage and 

access control model 

The RDF triple is a basic ontological structure and 

ontologies represented by OWL 

(Web Ontology Language) can be converted into 

the RDP triple representation. This study proposes 

an HBase-based storage and access control model 

for agricultural ontologies represented in this way. 

The RDF triple is defined as <s, p, o>, where s is 

the subject, p is the property, and o is the object. s 

and o are concepts and can be taken as nodes. p is 

a relation between concepts and can be taken as a 

line connecting two nodes. Two HBase tables 

SR_P_O and OR_P_S, representing the RDF, 

were designed according to the characteristics of 

the agricultural knowledge relevant to this study. 

They are shown in Tables 3 and 4. 

Table 2 shows the structure of the SR_P_O table. 

The row key is composed of s and r. r represents a 

role, which is set by the access control and 

determines whether the data can be accessed by a 

user possessing a particular role. If the role as a 

property is placed in the column family, the table 

has to be gradually scanned to determine whether 

the knowledge can be accessed by the role. 

Therefore, placing the role in the row key can 

increase the efficiency. For example, the row key 

in the second row shows that s2 can be accessed 

by r1. Similarly, in the third row, s3 can be 

accessed by r1 but not r3. If there are no r’s in the 

row key then the subject cannot be accessed. The 
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column family property has two columns: name 

and value. Name represents the property of the 

RDF triple and value represents the object of RDF 

triple as the property value. The storage structure 

in the OR_P_S table is similar to that of SR_P_O 

table. For the RDF triple <s3, p2, o2>, s3 can be 

accessed by r2 and r3 (see Table 2) whereas o2 can 

only can be accessed by r2 (see Table 3). 

Furthermore, r3 can access s3 but not the 

corresponding property value. 

Table 2.Storage structure for SR_P_O table 

Row key Time stamp 
Column family: property 

Name Value 

s1 
t1 property: p1 o1 

t2 property: p2 o2 

s2, r1 

t3 property: p1 o3 

t4 property: p3 o1 

t5 property: p4 o4 

s3, r2, r3 
t6 property: p2 o2 

t7 property: p3 o3 

 

Table 3. Storage structure for the OR_P_S table 

Row key Time stamp 
Column family: property 

Name Value 

o1, r1 
t1 property: p1 s1 

t4 property: p3 s2 

o2, r2 
t2 property: p2 s1 

t6 property: p2 s3 

o3, r1, r2, r3 
t3 property: p1 s2 

t7 property: p3 s3 

o4, r1 t5 property: p4 s2 

 

The HBase storage model proposed in this work 

can satisfy seven of the triple pattern query modes 

shown in Table 4. In each pattern, s, p, and, o 

represent constants and ?s, ?p, and ?o represent 

variables. The pattern (?s, p, ?o), in which 

property is the only condition, is relatively rare. 

To satisfy this pattern, the storage model would 

need to have a table with property as the row key 

and this would increase the space cost of storage. 

If this pattern is requested, then either of the two 

tables can queried as a full table. 

Table 4. Relationships between HBase tables and 

triple patterns 

Triple pattern 
HBase table 

SR_P_O OR_P_S 

(s, p, o) √ √ 

(s, p, ?o) √  

(s, ?p, o) √ √ 

(?s, p, o)  √ 

(s, ?p, ?o) √  

(?s, p, ?o) √ √ 

(?s, ?p, o)  √ 

(?s, ?p, ?o) √ √ 

III. SPARQLquery algorithms 

1. Access control and matching triple 

pattern algorithm 

The access control and matching triple pattern 

algorithm is used to judge whether the input triple 

pattern matches the HBase triple pattern and 

access is allowed. 

Algorithm 1 A&M_TP 

Input: t = (ts, tp, to) is the input triple pattern, r is 

the user’s role, ht= (hs, hp, ho) is the HBase triple 

pattern, and ra is a role array of ht 

Output: “Access denied”, True or False 

if (r isn’t in ra) 

   then return “Access denied” 

else 

{ 

   if (t.ts is a variable || t.ts== ht.hs) && (t.tp is a 

variable || t.tp == ht.hp) && (t.to is a variable || 

t.to == ht.ho) 

      then return True 

   else return False 

} 
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2. Triple pattern query algorithms 

The triple pattern query algorithms match the 

eight triple patterns. Algorithm 2 is the main 

algorithm for a single triple pattern query and is 

the entrance query algorithm. 

Algorithm 2 Q_TP 

Input: t = (ts, tp, to) is the input triple pattern, and 

r is the user’s role 

Output: Result is the set of triple patterns that 

match t 

if (t.ts isn’t a variable) 

then Result = QSR_P_O(t, r) 

else if (t.to isn’t a variable) 

then Result = QOR_P_S (t, r) 

else  

Result = TSR_P_O (t, r) or Result = TOR_P_S (t, 

r) 

In Algorithm 2, if the subject of the triple pattern t 

isn’t a variable, then result is obtained by the 

QSR_P_O algorithm. If the object of the triple 

pattern t isn’t a variable, then result is obtained by 

the QOR_P_S algorithm. If only the property of 

triple pattern t isn’t a variable, then result is 

obtained through traversal of the SR_P_O or 

OR_P_S table. 

 

Algorithm 3 QSR_P_O 

Input: t=(ts, tp, to) is the input triple pattern, and r 

is the user’s role 

Output: Result is the set of triple patterns that 

match t 

Result =  

Find rows in the SR_P_O table whose row key 

contains t.ts, to generate a candidate set cs. 

foreach (row: cs) 

{ 

hti= (hsi, hpi, hoi)is a triple pattern that row i 

represents, hti.hsi is the subject of row i in the row 

key, hti.hpi is the property name of row i, and hti. 

hoi is the property value of row i 

rai is a role array of rowiin row key 

   if (A&M_TP(t, r, hti, rai) == True) 

     then Result = Result + t 

} 

returnResult 

 

Algorithm 4 QOR_P_S 

Input: t=(ts, tp, to) is the input triple pattern, and r 

is the user’s role 

Output: Result is the set of triple patterns that 

match t 

Result =  

Find rows of the OR_P_S table whose row key 

contains t.to, to generate a candidate set cs. 

foreach (row: cs) 

{ 

hti= (hsi, hpi, hoi) is a triple pattern that rowi 

represents, hti.hsi is the property value of row i, 

hti.hpi is the property name of row i, and hti. hoi is 

the object of rowiin row key 

rai is a role array of rowiin row key 

 

   if (A&M_TP(t, r, hti, rai) == True) 

     then Result = Result + t 

} 

returnResult 

 

Algorithm 5 TSR_P_O 

Input: t=(ts, tp, to) is the input triple pattern, and r 

is the user’s role 

Output: Result is the set of triple patterns that 

match t 

foreach (row: SR_P_O) 

{ 

hti= (hsi, hpi, hoi)is a triple pattern that rowi 

represents, hti.hsi is the subject of row iin the row 

key, hti.hpi is the property name of row i, and hti. 

hoi is the property value of row i 

rai is a role array of rowiin row key 

   if (r is in rai&&t.tp == hti.hpi) 

     then Result = Result + t 

} 

return Result 

 

Algorithm 6 TOR_P_S 

Input: t=(ts, tp, to) is the input triple pattern, and r 

is the user’s role 
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Output: Result is the set of triple patterns that 

match t 

foreach (row: OR_P_S) 

{ 

hti=(hsi, hpi, hoi)is a triple pattern that rowi 

represents, hti.hsi is the property value of row i, 

hti.hpi is the property name of row i, hti. hoi is the 

object of row iin the row key 

rai is a role array of rowiin row key 

   if (r is in rai&&t.tp == hti.hpi) 

     then Resul t= Result + t 

} 

return Result 

According to the ts or to of the input triple pattern 

t, algorithms 3 and 4 first obtain rows that are 

eligible by indexing the row key and then 

matching with t. Algorithms 5 and 6 directly 

match t by traversing either the SR_P_O or 

OR_P_S table. Although algorithms 5 and 6 are 

slower than algorithms 3 and 4, they are not 

commonly needed in agricultural ontology 

services. Omitting a table whose row key contains 

property reduces the required storage space by one 

third. 

 

IV. Experiment and discussion 

1. Experimental data 

Experimental data concerned knowledge of tea 

pests. Five data sets were generated using a 

process similar to LUBM. The data profile is as 

follows: 

In each ontology 

 every atom is assigned by 1-4 roles, which 

are r1, r2, r3 and r4 

In each order 

 3-9 families are subclasses of the order 

In each family 

 2-7 pests are subclasses of the family 

 every pest causes damage in 1-4 ways, 

which are plant-sucking, root-eating, leaf-

eating, and tree-drilling 

 every pest harms 1-4 of the tea parts, 

which are leaf, flower, bud, and root 

 every pest is eaten by 1-5 predators 

 every pest lives in 1-4 tea areas 

 every pest is prevented using 1-4 methods, 

which are agricultural prevention, chemical 

prevention, physical prevention and 

biological prevention 

The experiment used three data sets that were 

generated according to this profile. The sizes of 

the data sets are shown in Table 5. 

Table 5. Data sets 

Data set Orders RDF triples Size 

D1 100 115362 7.1M 

D2 7500 8409835 467.9M 

D3 20000 22936721 1.26G 

D4 50000 55321649 3.02G 

D5 75000 86326693 4.86G 

2. Experimental environment 

The experiment was carried out using 

virtualization software (VMware vSphere 

Hypervisor (ESXi) 6.0.0). The technical 

specification of the server was as follows: Lenovo 

T100 with a 3.10 GHz Intel(R) Xeon(R) E31225 

quad-core processor, 20 G memory, and 1T hard 

disc. Four virtual servers were deployed on this 

machine, each with a vCPU, 4G memory, and 

100G hard disc. All servers ran Ubuntu 14.04 

LTS, Hadoop 1.1.2, HBase 0.94.27, and Oracle 

JDK 1.7. One of the four virtual servers was 

configured as a master server, on which 

NameNode and JobTracker were installed. The 

others were slave servers running DataNode and 

TastTracker. 

3. Results and Discussion 

The experiment consisted of the following five 

queries directed to HBase: 

Q1 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 
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PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#> 

SELECT * 

WHERE 

{?X?Y?Z} 

 

Q2 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#> 

SELECT ?X 

WHERE 

{?X rdf:typete:role} 

 

Q3 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#> 

SELECT ?X 

WHERE 

{?X rdf:typete:role. 

 ?X te:assigned te:pest1} 

 

Q4 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#> 

SELECT ?X 

WHERE 

{?X rdf:typete:pest. 

 ?X te:harmte:flower} 

 

Q5 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#> 

SELECT ?X, ?Y, ?Z 

WHERE 

{?X rdf:typete:role. 

 ?Y rdf:typete:pest. 

 ?Z rdf:typete:area. 

?X te:assigned ?Y. 

?Y te:live ?Z. 

?X te:assigned ?X} 

 

Q6 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 

PREFIX te: <http://www.owl-

ontologies.com/teapest.owl#> 

SELECT ?X, ?Y 

WHERE 

{?X rdf:typete:role. 

 ?Y rdf:typete:pest. 

 ?X te:assigned ?Y. 

 ?Y te:damagete:leaf_eating} 

Each query was ran five times on each of the 

databases, and the average response time was 

calculated. The average response times in 

MapReduce mode was compared with those 

obtained in stand-alone mode, as shown in Fig 1. 
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Fig 1. Comparison of query times between stand-alone and MapReduce modes. D1-D5 are data sets of 

increasing size. 

Q1 and Q2 are queries based on a triple and are 

satisfied by a very large number of results. Q1 

failed on datasets D1 and D2, and Q2 failed on 

dataset D2 because the number of results was too 

large. The MapReduce query times for Q1 and Q2 

were shorter than in stand-alone but not very 

different. 

The first clause in Q3 and Q4 defines the type of 

the variable. The second clause links to the first 

clause through the subject and its object is the main 

condition of the query. The query time in stand-

alone mode increases more quickly than in 

MapReduce mode, indicating the scalability of 

MapReduce mode for Q3 and Q4. 
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Q5 is a query with multiple variables and triples. It 

is a complex query because of the complex 

connection between the clauses, the multiple kinds 

of logical relationships and the many alternative 

times of shared variables. This is the most complex 

query and the time in stand-alone mode grows 

fastest. 

Q6 has two variables and four clauses. The last 

clause is the main condition for the query and so the 

alternative times of the shared variables are less 

than Q5. This improves efficiency. The query time 

in MapReduce mode grows more slowly than in 

stand-alone mode. 

In summary, the model proposed in this paper 

performs better that the common stand-alone 

method and is suitable for handling large-scale 

ontologies. Provided there are sufficient virtual 

servers, the model is highly scalable. 

 

V. Conclusions 

This paper proposes a model for agricultural 

ontology storage and access control based on 

Hbase, which not only successfully implements 

access control by setting a role property, but is also 

suitable for large-scale storage and query. 

Experimental ontologies were generated according 

to a set profile that is similar to LUBM. Six kinds 

of queries were designed and run in both 

MapReduce and stand-alone modes. The results of 

these experiments demonstrated the scalability of 

the proposed model. 
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