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Abstract 

Error verification of electric meters in the power industry is usually manually 

conducted through standard meters. With the continuous improvement of real-time 

data collection technology, data of power systems available for analysis is becoming 

more abundant. In this paper, we propose an adaptive gradient descent method for 

error estimation of electric meters based on large amount of data. In order to improve 

the accuracy of estimation results, we first adopt a clustering algorithm for light load 

data detection and elimination. Then we provide a detailed description of the remote 

estimation model for the running error of electric meters. According to the simulation 

experiments, results obtained by the proposed method can well match the true value of 

electric meter's running error. This method can effectively reduce the maintenance 

cost of on-site calibration of electric meters, and can also provide a reference for the 

service of electric meters. 

Keywords:smart meter, AMI data; running error, remote estimation, Adaptive 

Gradient Descent Algorithm 

 

1.INTRODUCTION 

Smart grid is a modern power supply system that 

monitors, protects, and optimizes the operation of its 

interconnected components, including smart meters. 

Accurate and reliable energy measurement methods 

are necessary to ensure the reliability of power 

supply, from power generation, transmission to 

distribution and power consumption [1-3]. In 

addition, measurement accuracy has an important 

impact on various power data analysis [4,5]. Thus 

we need take measures to obtain the status of 

metering devices in a timely manner, and estimate 

the reliability and accuracy of the devices [6-8]. The 

running error of electric meters is a key indicator for 

measuring the performance quality of the electric 

meters. At present, evaluation of the running error of 

electric meters is generally carried out by manual 

operations (sampling inspection, user review, etc.) in 

the actual operating process. Recently, with the 

development of communication technology, smart 

meters can transmit online electricity consumption 

information remotely in real time [9-11]. Related 

works based on operation data analysis of smart 

electric meters have become increasingly mature 

[12-14]. The application of data analysis techniques 

to the calculation of electric meters' error has certain 

practical significance [15-18]. 

In the field of remote evaluation for electric meter's 

operating error, many institutions at home and 

abroad have carried out related theoretical and 

practical research in order to solve the problems 

caused by the traditional manual calibration method 

[19-21]. Some researchers have studied the method 

of calculating running error of each electric meter 
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based on electricity information collection, 

processing, and real-time monitoring [22-24].  For 

example, Guo used the AMI measurement data to 

propose an autonomous error algorithm of the 

electric meter cluster, and discussed the accuracy 

class of any electric meter [25]. Qiao et al. deduced a 

method for calculating running errors based on 

multiple linear regression models, and explored the 

application of artificial intelligence technology in 

this regard [26]. On the basis of the above problems, 

Yang et al. proposed a new iterative method for line 

loss estimation, and they deeply studied the data 

distribution of electric meters' calculation errors 

[27]. 

How to judge the status of each running electric 

meter so that individuals with faults or errors 

exceeding the limits can be found in time and 

replaced is a very difficult problem in theory. 

Although the above works have achieved certain 

results in remote diagnosis for running errors of 

electric meters, research on remote error calculation 

of electric meters is still in its infancy, with poor 

applicability in actual working conditions. For 

example, power loss in the network is a non-

negligible part which requires real-time electric data. 

Irrational calculation of the power loss will 

aggravate inaccuracy of the estimation error and 

cause misjudgement. In addition, the effectiveness of 

solving algorithm should also be considered to 

ensure that the results are optimal. Therefore, it is 

important to take all the above factors into account 

for high accuracy and practicality of the error 

estimation method, and then truly implement remote 

analysis and calculation of electric meter's error. 

In this paper, we establish an error analysis model on 

the basis of [24], and propose an adaptive gradient 

descent method for estimating the running error of 

electric meters based on massive measurement data. 

The energy flow equation of the experimental area is 

established based on the principle of energy 

conservation with fixed loss and variable line loss 

taken into account. Considering the calculation 

accuracy, we use the fuzzy C-means clustering 

algorithm to pre-process the original data and 

eliminate abnormal data under light load conditions. 

For solution of the error analysis model, traditional 

least square method has its own limitations, 

including problems as data saturation, rank missing 

and so on. Therefore, we propose an adaptive 

gradient descent method to find the optimal solution 

of this problem, which makes full use of data and 

guarantees convergence. Adopting the proposed 

method to study and estimate the running errors of 

the electric meters in the experimental area, the 

maintenance efficiency of the smart meters is greatly 

improved and the operating costs are reduced. The 

accuracy and real-time performance of remote 

estimation will help find suspected abnormal 

measurement points in time by technical means, and 

overcome the current heavy workload of manual 

investigation. 

The rest of this paper is organized as follows. In 

Section 2, we introduce the framework of error 

estimation and data pre-processing algorithm. The 

mathematical principle and its solving algorithm for 

the remote error estimation of electric meter clusters 

in the experimental area are described in detail in 

Section 3. In Section 4, we provide the 

implementation of the proposed method and 

accuracy verification. Finally, we draw some 

conclusions from our results in Section 5. 

 

2.INFORMATION COLLECTION OF 

ELECTRIC METERS AND DATA PRE-

PROCESSING 

2.1 Framework for Remote Error Estimation of 

Electric Meters 

The proposed remote error estimation method for 

electric meters is based on the analysis of large-scale 

electric meters' measurement data. The 

implementation of this method includes data 

acquisition, pre-processing, model calculation, 

accuracy analysis and other steps. Specifically, 

firstly, we obtain the total power of the on-site area 

and the users' electricity consumption from the 
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electricity consumption information collection 

system. Next, we adopt a clustering algorithm to pre-

process the acquired data so as to eliminate 

abnormal measured data such as null data and light 

load data. Then, we analyse the power relationship 

of the on-site area and provide a detailed model of 

remote error estimation. Then the model can be 

solved by the conventional regression analysis 

algorithm to obtain the running error of each smart 

meter. It is worth mentioning that the reasonability 

of the model and the effectiveness of the algorithm 

will directly affect the accuracy of error estimation. 

At last, we conduct some verification experiments to 

assess the performance of error estimation. This 

process is illustrated in Figure 1. 

 

Figure 1. Scheme of the data based error estimation 

model. 

2.2 Electric Information Collection 

The original measurement data is mainly obtained 

from the AMI-based smart meter data acquisition 

system. Although the collection system's 

architectures are slightly different in different 

regions, they share the same typical physical 

architecture as shown in Figure 2. The traditional 

power information collection system mainly 

includes three parts: master station, communication 

network, and terminal execution. The master station 

layer plays a supervisory role and is responsible for 

collecting users' power consumption automatically. 

The communication layer establishes an information 

transmission channel between the master station 

layer and the user terminal equipment to transmit all 

data in the power consumption process in real time. 

Through the communication layer, the computer 

equipment in the master station receives various 

types of power information data (electricity quota, 

electrical power, loss, etc.) from the terminal 

execution (electric meters). On the contrary, the 

execution layer processes according to the command 

from the master station. Each electric meter can take 

multiple measurements at different times, and the 

master station then records the readings of all 

electric meters in the entire network. 

 

Figure 2. Physical architecture of the electric 

information collection system. 

2.3 Data Pre-processing to Eliminate Abnormal 

Data 

The electricity information collection system can 

usually provide measurement data under different 

operating conditions. Among these data, there may 

exist data in light load conditions when the running 

load current is below 5%  to 10%  of the rated 

current. Light load affects the submersible 

performance of smart meters and the working state 

of current transformers, causing great effects on the 

accuracy of smart meter measurement. Estimating 

the running error of electric meters with light load 

data included will result in relatively high 

inaccuracy. Thus, in order to ensure high accuracy 

level for error estimation of electric meters, the 

measurement data at light load needs to be removed. 

Each user's power consumption in measurement 

period t  is expressed as 

 cos ,i i iE U I t    (1) 

where 
iU  and 

iI  represent the average voltage and 

average current during t respectively, and cos  

represents the power factor. As the voltage and 

power factor remain almost constant for each user, 

we can use */iE E  ( *E  is the range of the energy 

meter) to approximate */iI I  ( *I is the rated current). 

Thus */iE E is chosen to characterize the operating 

condition of electric meter i . Suppose we have n sets 
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of measurements for each user, and we take 

 1 2, , ,= mE E E E  ( m  is the number of electric meters 

in the system) to describe each measurement result 

of the whole system. In this paper, the original 

measurement data sequence (1), (2), ( )E E E n is 

preprocessed by fuzzy C-means clustering algorithm 

[28-31] to screen out data groups in similar 

operating conditions, and then the measurement data 

under light load conditions is removed[32]. The 

specific flow of the algorithm is shown as follows. 

Input:Electric meters' measurement data 

(1), (2), , ( )E E E n  

Output:Cluster centre C  and membership matrix U  

Step 1: Given the iteration termination parameter  . 

Step 2: Use the mountain climbing method to 

determine the number of clusters and initialize 

cluster centre 
0C  and membership matrix 

0U . 

Step 3: Update the clustering centres C  and 

membership degree matrixU . 

Step 4: If 

  ,J C U   ,  (2) 

 

then return Final cluster centre C  and membership 

matrix U . 

Else 

Proceed to step 3. 

Based on the above algorithm, we classify the 

operating conditions of each measurement. Then we 

use threshold processing to determine the cluster 

centre under light load conditions ( */ 0.1E E  ). And 

we can get the light load data group of each light 

load cluster centre from the membership matrix. 

After removing these data, we obtain the reliable 

data used for running error estimation. 

 

3.METHOD FOR ESTIMATING ELECTRIC 

METER'S RUNNING ERROR 

3.1Establishing an Estimation Model of Running 

Error 

The electric meters cluster topology of a treelike 

distribution network is shown in Figure 3. Suppose 

there is a regional meter 
0M  and m  sub-meters 

 1,2, ,iM i m   for users in the on-site area. 

Corresponding, the actual power consumption 

through the electric meters during a certain period is 

respectively 
0y  and  1,2, ,ix i m  . A consumer’s 

load profile or power consumption profile tends to 

remain the same over a period of time. According to 

the law of conservation of energy illustrated above, 

at any sampling period, the actual energy flowing 

into the on-site area is equal to the actual power flow 

from the district. Namely, during any time interval, 

the algebraic sum of increments of all throughputs 

going through the electric meter cluster should be 

zero. With power loss (
lossw ) taken into consideration, 

the power relationship of the station area can be 

expressed as the following equation. 

 0

1

.
m

i loss

i

y x w


   (3) 

 

Figure 3. The electric meters cluster topology of a 

treelike distribution network. 

Suppose the readings of electric meters during 

measurement period t  are 
0y  and  1,2, ,ix i m  . As 

we all know, there is a certain running error when 

the electric meter is in operation. Since the error 

level of the regional meter 
0M  is generally 
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significantly lower than the meters of users in actual 

conditions, it is assumed that the running error of 
0M  

is known and zero (i.e.
0 0y y ). The relative error of 

i  user's electric meter measurement 
i  is expressed 

by the following equation 

 100%,i i

i

i

x x

x



   (4) 

where 
ix  is the real power flowing through the 

electric meter i  and 
ix  is the reading value of 

electric meter. According to the definition of relative 

error, we can get 

 .
1

i

i

i

x
x





 (5) 

Suppose 
1

1
i

i







, the power relationship of 

equation (4) can be written as 

 0

1

.
m

i i loss

i

y x w


   (6) 

In the practical application of the above principle, 

the total power loss of the on-site area includes line 

loss, leakage and other methods. Line loss is the 

thermal loss caused by the current flowing through 

the lines in the cluster of electric meters, which is 

expressed in equation (7). 
lr  is the branch resistance 

of line l , which can be calculated according to the 

characteristics of the wire and  I   is the real-time 

current in time period t  As the system topology, 

trace length, working current and voltage of the sub-

meter can be measured, the line loss of the system 

can be calculated according to the weight of the total 

length of the regional meter to each sub-meter [33]. 

  2

_
0

1

m t

line loss l

l

w I r d 


 . (7) 

While other power losses as leakage loss and 

equipment loss are fixed losses not related to the 

topology of the power grid. Calculation of actual 

total leakage loss needs leakage conductance, which 

is related to the material property parameters and 

cannot be obtained. In [27], some basic assumptions 

for fixed loss in the on-site area are proposed in 

order to reasonably model the actual situation. Here 

we adopt the assumption that the fixed loss in the 

station area is an independent constant 
0  to simplify 

our problem. Based on the above analysis and 

assumption, suppose 
0 _line lossy y w  , we can rewrite 

equation (6) as 

 0

1

.
m

i i

i

y x  


   (8) 

We establish the mathematical model equation (8) of 

remote estimation for the running error of electric 

meters. Obviously, the accuracy of error estimation 

results is related to the accuracy of line loss 

calculation and the effectiveness of solution method 

of equation (8). 

3.2Error Estimation Algorithm 

In the case when electric meters' error maintain a 

relatively stable state within a certain sampling time, 

the unknown parameters in equation (8) can be fitted 

based on the data of multiple samplings, and then the 

relative error of each energy meter in the station area 

can be obtained. The error estimation problem can 

be transformed into a parameter fitting problem of a 

multiple linear regression model. Specifically, a set 

of parameters 0 1
ˆ ˆ ˆ ˆ, , , m     

 
 is estimated based on 

multiple sets of measured values ,x y  with ̂  

infinitely approximate the value of parameter 

 0 1, , , m      in equation (8), which is described in 

mathematical form as 

 0

1

ˆ ˆ .
m

i i

i

y x 


   (9) 

Based on above analysis, the relative error of electric 

meter i can be obtained as 

 
1ˆ 1.
ˆi

i




   (10) 

Given the pre-processed data point set 

 ( ), ( ) , 1,2, ,x j y j j n  , which means that we have n  

sets of data under normal running condition (where 

1 2( ) [ ( ), ( ), , ( )]mx j x j x j x j  ). For any parameter ̂ , we 

can calculate residual and the loss function is 
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2

0

1 1

1ˆ ˆ ˆ( ) ( ) ( ) .
2

n m

i i

j i

J y j x j
n

  
 

 
   

 
   (11) 

Our goal of parameters estimation is to obtain 

  *ˆ ˆarg min J  . We can solve the above problem 

by traditional least square method. While when the 

amount of data n  is very large, the symmetric matrix 

is n-dimensional times n-dimensional and it will 

cause high complexity of the solving process. 

Besides, the power consumption of users in the on-

site area is in a similar condition, causing the data 

matrix not a full rank matrix. In short, considering 

problems as data saturation, traditional least square 

method is not applicable in this issue. Thus the 

gradient descent algorithm is chosen to solve the 

above parameters estimation issue as an optimization 

problem. As the direction of gradient is the fastest 

changing direction of the loss function, we can 

finally reach the minimum. The specific flow of the 

algorithm is shown in the following. 

Input :Data point set  ( ), ( ) , 1,2, ,x j y j j n   

Output : Estimated parameter ̂  

Step1:Algorithm related parameters ̂ , algorithm 

termination distance   and step size   are 

initialized. With prior knowledge, we initialize all ̂

to 1 , the step size to 0.1 , and then optimize them 

when tuning. 

Step 2:Determine the gradient of the current 

position loss function 

 
 

     0

1 1

ˆ
1 ˆ ˆ .

ˆ

n m

i i i

j ii

J
x j y j x j

n


 

  

  
   

  
   (12) 

Step 3：If  all the gradient descent distances 

 
 ˆ
ˆ
i

J 








, (13) 

then the algorithm terminates, and the current ̂  is 

the optimal result *̂ , return ̂ . 

Else 

Update all ̂  as 

 ˆ ˆ
ˆ

J
  




 


. (14) 

After the updating process is completed, proceed to 

step 2. 

A key point in gradient descent optimization is the 

setting of the learning rate. If the learning rate is too 

small, the convergence speed will be slow. While if 

it is too large, it will cause training shock and may 

diverge. Another key point is that the process of 

gradient descent may fall into the local minimum. 

For global convergence and fast converging speed, 

we propose an adaptive learning rate [34] for 

gradient descent algorithm as follows, where   is 

the initial learning rate,   is a constant with small 

value, and t  indicates the number of iterations. 

 

 
 

1

ˆ ˆ ˆ( 1) ( ) .
ˆt t

t t J

J
 


  

 


   

 
 (15) 

The above algorithm can estimate each parameter ˆ
i  

based on n  measured group data, and then the 

running error of each electric meter ˆ
i  can be 

obtained. 

3.3 Accuracy Check 

In order to analyse the accuracy of the running error 

of electric meter estimated by the proposed method, 

check for the error estimation needs to be performed. 

With the actual value of the electric meter's error in 

the experimental area measured by the stratified 

sampling method for comparison, the Mean 

Absolute Percent Error (MAPE) and Root Mean 

Square Error (RMSE) can be used for accuracy 

judgment. During the remote estimation of the 

electric meter error, the smaller MAPE and RMSE 

value indicates higher accuracy of the estimated 

error. 

 

 

1

2

1

ˆ
1

MAPE 100%,

1 ˆRMSE ,

m
i i

i i

m

i i

i

m

m

 



 






 

 





 (16) 

where m  represents the number of energy meters 

and 
i  represents the actual error of energy meter i . 
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4.CASE ANALYSIS 

We first remove the data under abnormal working 

conditions according to the data pre-processing 

method in Section 2, and then we use the data under 

normal working conditions to perform following 

estimation. 

In order to verify the effectiveness the proposed 

method, we choose a distribution system with 68  

users as experimental area. Each user's electric meter 

is independent with each other. There is a regional 

meter to calculate the power consumption of the 

entire system. In the actual operation process, we 

collect 300  sets of real-time data at different time 

periods for estimation. The estimated error of each 

meter is shown in Figure 4(a). Based on the results 

in Figure 4(a), we can quickly identify meters in 

abnormal operation (relative error greater than 2% ). 

Besides, we also present a probability distribution 

chart of the estimated errors of the users' electric 

meters in the system. From Figure 4(b), we can 

evaluate the conditions of electric meters in the 

entire system and determine whether most electric 

meters in the system are in a normal working state. 

We can see from Figure 4(b) that the running errors 

of electric meters in the experimental area follow a 

normal distribution. Most of the running errors of 

electric meters are at low level (less than 1% ). 

 

 

Figure 4. Estimated errors of electric meters and probability density of estimated errors. 

To verify the accuracy of the proposed algorithm in 

this paper, we present the estimated error of each 

electric meter with different strategies in Figure 5(a). 

And we also provide the true value of running error 

as a reference. We select the traditional least squares 

algorithm (LS) and batch gradient descent algorithm 

(BGD) for comparison with our adaptive gradient 

descent algorithm (AdaGD). From Figure 5(a), we 

can see that the adaptive gradient descent algorithm 

proposed in this paper and the traditional least 

squares algorithm can better match the true error, 

while the batch gradient descent algorithm is not 

very accurate with more misjudgements. In addition, 

in order to provide a more intuitive representation of 

the accuracy under each strategy, we show the 

MAPE and RMSE value of each strategy in Figure 

5(b), from which we can clearly see the proposed 

adaptive gradient descent algorithm holds higher 

accuracy in error estimation. 
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Figure 5. Accuracy of different estimation strategies. 

Due to the poor quality of the network parameters of 

the distribution network and the inaccuracy of the 

network parameters, it is difficult to obtain line loss 

accurately. We take the line loss calculation error 

into account in this part. In Figure 6(a), we present 

the estimated error of electric meters with 1%  and 

5%  line loss calculation error. From Figure 6(a), we 

find that with the increase of the line loss calculation 

error, the misjudgement of the running error of the 

electric meters will also increase. Thus we need to 

ensure that the accuracy of the line loss calculation 

is high enough in practical applications. On the other 

hand, data under light load conditions will also 

affect the accuracy of the electric meter's running 

error estimation results. In Figure 6(b), almost all 

electric meters' estimated errors display large 

deviation from actual value with abnormal data 

included in estimation, which indicates that it is 

necessary to remove measurement data under light 

load condition. 

 

Figure 6. Estimated error under impact of different measurement data quality. 
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5.CONCLUSION 

This paper proposes an adaptive gradient descent 

method that can estimates the running error of 

electric meters remotely based on massive data, 

taking into account the situation of power loss in the 

on-site area. The algorithm proposed in this paper 

combines the latest developments in data processing, 

parameter estimation, etc., and makes full use of a 

large amount of data, which is more adaptable than 

the traditional method of solving linear equations 

with fewer sets of data. In addition, we consider the 

influence of different external factors as abnormal 

data and take measures to improve accuracy. 

Experiments proved that the estimation result of this 

method has high accuracy. The data-based 

estimation method for running error of electric 

meters can provide great convenience for the 

monitoring of the operation of electric meters, which 

is helpful to the construction of the smart grid. 

However, this method only estimates the average 

error of electric meters during the measurement 

period. In real situation, the operation error of 

electric meters may change with the different load. 

The subsequent work needs to consider the change 

of the load. 
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