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Abstract 
In this article we determine the relationship between the 

neighborhood polynomial ( , )N G x and majority neighborhood 

polynomial ( , )
M
N G x  andt their coefficients. Also found some bounds 

of these polynomials of graphs and coeffiecients of polynomials.  

 
Index Terms: Neighborhood number, neighborhood polynomial, 

Majority neighborhood number and majority neighborhood 

polynomial Number 

 

 
1. Introduction 

The relationship between the neighborhood polynomial

( , )N G x and the majority neighborhood polynomial of a 

graph ( , )
M
N G x  are parameters studied in detail in these 

article [11] - [17],. 

A set S ( )V GÍ  is called a majority neighborhood set if 

[ ]M
u S

G N u
Î

=  contains at least 
2

pé ù
ê ú
ê ú
ê ú

 vertices 

and at least 
2

qé ù
ê ú
ê ú
ê ú

 edges. A majority set S  is called 

a minimal majority neighborhood set if no proper subset 

of S is a majority neighborhood set. The minimum 

cardinality of a majority neighborhood set is called the 

majority neighborhood number ofG  and is denoted by 

( )MN G [9],[24]-[26]. 

The neighborhood polynomial ( , )N G x of G is defined in 

as  
( )

( , ) ( , )
n

i

i n G

G x G i x


    where ( , )G i is family of 

neighborhood sets with cardinality i . The majority 

neighborhood polynomial of G is defined as

( )

( , ) ( , )
M

p
i

M M
i n G

N G x N G i x


  . The ( , )
M
N G i  is family of 

neighborhood sets with cardinality i  and

( , ) ( , )
o
n G i N G i . In this article we found some 

relationships between the coefficient and polynomials. 

The majority neighborhood number has been studied by 

Joseline Manora and Swaminathan in [9]. 

 

2. Relationship Between 
( , )N G x

 and
( , )

M
N G x

.  

Theorem 2.1. Let G be a connected graph with p 

vertices. If all the vertices of G are full degree then the 

neighborhood polynomial and majority neighborhood 

polynomials are the same.       

Proof. Since all the vertices of a graph G are full degree, 

the induced subgraph of each vertex covers all vertices 

and   edges. Therefore, ( ) ( ) 1
o M
n G n G  . From the 

definition of ( , )N G x  and ( , )
M
N G x  one can construct 

these polynomials with size starting from 1,2,3,...i p . 

Therefore in both polynomials we get the same number of 

possible neighborhood set and majority    neighborhood 

sets of sizes i = 1, 2,3,…,p for  G. Thus we get the 

neighborhood polynomial which is same as the majority 

neighborhood polynomial for G. 

Example. For the complete graph 
1,5
K the 

0
( ) ( ) 1

M
n G n G   then    

5 4 3 2 5( , ) 5 10 10 5 ( , )
M

N G x x x x x x N G x       

Theorem 2.2. Let G be a disconnected graph with m 

components such that
1

m

i
i

G G


 . Then the structure of    

neighborhood polynomial and that of majority 

neighborhood polynomial are the same. But the 
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polynomials are not same. 

Proof. Let
1

m

i
i

G G


 . For each component
i
G , 

1,2,3,...,i m . The neighborhood polynomial and 

majority neighborhood polynomial are obtained 

independently then take the product of these polynomials 

of, 
i
G ,   1 , 2 , 3 , . . . ,i m , we get the neighborhood 

polynomial ( , )N G x  of G . Similarly, we get ( , )
M
N G x  , 

majority neighborhood polynomial of G. Therefore, 

1

( , ) ( , )
m

i
i

N G x N G x


 and
1

( , ) ( , )
m

M M i
i

N G x N G x


 . Hence 

these two polynomials have the same structure. At   the 

same time, for each components
i
G , 1,2,3,...,i m , 

neighborhood number ( )
o
n G and majority neighborhood 

number ( )
M
n G are different. Therefore the coefficients of 

these two polynomials are different. 

Theorem 2.3. Let G be a totally disconnected graph with 

p   vertices. Then the neighborhood polynomial ( , )N G x

and    majority neighborhood polynomial ( , )
M
N G x are 

different. 

Proof. Let , 2
p

G K p  . Since the neighborhood number   

0
( )n G p  and ( )

2M

p
n G

 
  
 

, ( , )N G x  contains only one 

set with size i p .  Therefore, ( , ) pN G x x . But 

2 2

( , ) ( , )
p p

i i

M M
p p

i i

p
N G x N G i x x

i   
    
   

 
    

 
  . Thus the 

neighborhood polynomial and majority neighborhood 

polynomial of a graph G is different. 

Theorem 2.4. If a connected graph G has exactly one full 

degree vertex   then the neighborhood polynomial and 

majority neighborhood polynomial are different. 

Proof. Let G be any connected graph with a full degree 

vertex u . Therefore, the neighborhood number 
0
( ) 1n G   

and also majority neighborhood number ( ) 1
M
n G   . From 

the definition of neighborhood polynomial, both the 

polynomials are defined by 
1

( , ) ( , )
p

i

i

N G x N G i x


  and 

1

( , ) ( , )
p

i

M M
i

N G x n G i x


 . Since every neighborhood set 

must cover all the vertices and edges of G, there are 

neighborhood sets with different sizes   along with a full 

degree vertex u  only. In some cases, there is exactly one 

combination of neighborhood sets excluding u and in 

other cases, there are few possible neighborhood sets 

excluding the full degree vertex u . The structure of 

neighborhood polynomial is 

12 3 ... ;
0 1 1

p
p p p p
x x x x fewterms

p


       
                  

       
 

. 

In the case of majority neighborhood set, each one must 

cover at least 
2

p 
 
 

 vertices and at least
2

q 
 
 

edges. Here 

we get the same number of majority neighborhood sets of 

sizes 1,2,3,...,i p  including full degree vertex plus there 

are many possible combination of majority neighborhood 

sets of different sizes excluding the full degree vertex u  

Therefore the structure of majority neighborhood 

polynomial is 

12 3( , ) ... ;
0 1 1

p

M

p p p p
N G x x x x x moreterms

p


       
                   
       

Hence both neighborhood and majority neighborhood 

polynomials are different. 

Theorem 2.5. If a graph G has no full degree vertex then 

the coefficients of the neighborhood polynomial less than 

or equal to the coefficients of majority neighborhood 

polynomial and also neighborhood polynomial contains 

no ' 'x  terms. 

Proof. Since G has no full degree vertex, 
0
( ) 1n G   but

( ) 1
M
n G  . Then the neighborhood polynomial becomes 

but majority neighborhood 
2

( , ) ( , )
p

i

i

N G x N G i x




polynomial becomes
1

( , ) ( , )
p

i

M M
i

N G x n G i x


 .       

In neighborhood sets, each set covers p vertices and q 

edges. But in the case of majority neighborhood sets, 

each set covers at least 
2

p 
 
 

vertices and 
2

q 
 
 

edges. 

Therefore the total number of neighborhood sets of 

different sizes 1,2,3,...,i p  is lesser than the total 

number of majority neighborhood sets of different sizes 

1,2,3,...,i p .Certainly, the coefficients of neighborhood 

polynomial less than or equal to the coefficients of 

majority neighborhood polynomial of G. Since 
0
( ) 2n G 

and G has no full degree vertex, there is no neighborhood 

sets with size 1i  . Hence the neighborhood polynomial 

contains no „ x ‟ terms. 

Theorem 2.6. For both neighborhood and majority 

neighborhood polynomial of a graph G, the coefficient of 

1px  . 

Proof. Since the whole vertex set is a neighborhood set as 

well as a majority neighborhood set of a graph G, the 

coefficient of px is equal to 1. 

 

3. Conclusion 

The researcher found the relationship between the 

neighborhood polynomials and majority neighborhood 

polynomials and coefficients. Further proceed to 

determine the relationship between independent, 

connected and majority polynomial of these parameters.  
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