Complement Connected Majority Neighborhood Number

${ }^{1}$ I. Paulraj Jayasimman, ${ }^{\mathbf{2}}$ J. Joseline Manora
${ }^{1}$ Academy of Maritime Education and Training Deemed to be University, kanathur, Chennai
${ }^{2}$ TBML College, Porayar, Nagai

Article Info

Volume 82
Page Number: 2189-2191
Publication Issue:
January-February 2020

Article History

Article Received: 14 March 2019
Revised: 27 May 2019
Accepted: 16 October 2019
Publication: 12 January 2020

Abstract

A set of vertices S in a graph G is a majority neighborhood set of G if the subgraph $\bigcup_{v \in S}\langle N[v]\rangle$ contains atleast $\left\lceil\frac{p}{2}\right\rceil$ vertices and $\left\lceil\frac{q}{2}\right\rceil$ edges, where $\langle N[v]\rangle$ is the subgraph of G. In this article majority neighborhood connected complement set of G are introduced and this number determined $n_{\overline{C C M}}(G)$ for various graph structures.

Keywords: Connected Majority neighborhood number, Complement connected Majority neighborhood.

1. Introduction

In this article the author use the simple and undirected graph. The parameters $n_{0}(G), n_{c}(G)$ and $n_{C M}(G)$ was studied in the following articles [1],[5],[6]-[8].
2. Majority neighborhood connected complement number of a graph

Definition 2.1

Let G be a graph with m vertices and n edges. A complement connected majority neighborhood set $S_{C M N}$ such that $S_{C M N}$ is a connected majority neighborhood set in G and majority neighborhood set in \bar{G}. The complement majority neighborhood number is the minimum size of connected complement majority neighborhood set of G and is denoted by $n_{\overline{c c m}}(G)$.

Theorem

If $G=C_{r}$ with $r \geq 4$ then $n_{\overline{C C M}}(G)=\left\lceil\frac{r-3}{2}\right\rceil$.
Proof
If $G=C_{r},|V(G)|=r=|E(G)|$, the set $S_{c M}(G)=$ $\left\{v_{1}, v_{2}, v_{3}, . . v_{\left[\frac{r-3}{2}\right]}\right\}$ be the CMN- set. In $\bar{G} S_{c M}(G)$ covers $\left\lceil\frac{r-3}{2}\right\rceil$ vertices and $\operatorname{deg}\left(v_{i}\right)=r-3 \in \bar{G}$ $\operatorname{and}|E(\bar{G})|=r(r-3)$, each $\left|\left\langle u_{i}\right\rangle\right|=r(r-3) \geq \frac{r(r-3)}{2} \in$ \bar{G} and each $N\left[u_{i}\right] \geq\left\lceil\frac{r-3}{2}\right\rceil$. Hence $n_{\overline{C C M}}(G)=\left\lceil\frac{r-3}{2}\right\rceil$.

Theorem

For the path graph $P_{n}, n_{\overline{c c m}}(G)=\left\lceil\frac{p-3}{2}\right\rceil, p \geq 4$.

Theorem

For the $G=F_{2 r+1}$ with $r \geq 1$ then $n_{\overline{c c m}}(G)=2$
Proof: Let $G=F_{2 r+1}$ with $|V(G)|=2 r+1$ and $E(G)=$ $3 r$ in G. Let $S_{c M}(G)=\left\{v, u_{1}\right\}$ be the connected neighborhood setin G. Since $|n(v)|=2 r+1,|\langle n(v)\rangle|=$ $3 r$ and by the super hereditary property $n(G) \geq n_{M}(G)$. Therefore $S_{c M}(G)$ is connected majority neighborhood set. In complement of $G,|V(\bar{G})|=2 r+1$ and $|E(\bar{G})|=$ $r(2 r-2) . d(v)=0, d\left(u_{i}\right)=2 r-2 \in \bar{G}$. Therefore, $\left|n\left[u_{i}\right]\right|=2 r-1, u_{i} \in S_{c M}(G)$ and $\quad\left|\left\langle n\left[u_{i}\right]\right\rangle\right|=r-$ $2(2 r-2) \Rightarrow\left|n\left[u_{i}\right]\right|=2 r-1 \geq\left\lceil\frac{2 r+1}{2}\right\rceil=\left\lceil\frac{p}{2}\right\rceil \in \bar{G}$,
$\left|\left\langle n\left[u_{i}\right]\right\rangle\right|=r-2(2 r-2) \geq\left\lceil\frac{r(2 r-2)}{2}\right\rceil=\left\lceil\frac{q}{2}\right\rceil \in \bar{G}$.
Therefore, $S_{c M}(G)$ is majority neighborhood set.Hence $n_{\overline{c c m}}(G)=2$.

Theorem

If $G=K_{1, r}$ with $r \geq 2$ then $n_{\overline{c c m}}(G)=2$.

Theorem

For the wheel graph W_{r} with $r \geq 3 n_{\overline{c c m}}(G)=$ $\left\{\begin{array}{l}2 \quad \text { for } r=3,4 r \geq 8 \\ 3 \\ \text { for } \quad r=5,6,7\end{array}\right.$
Proof. Let $G=W_{r}$ with $r \geq 3$ and $|V(G)|=r,|E(G)|=$ $2 r$.

Case (i): $r=5,6,7$
If $G=W_{5}$ then $S_{c M}(G)=\left\{v, u_{1}, u_{2}\right\}, d(v)=\Delta(G)$ and $d\left(u_{1}\right)=d\left(u_{2}\right)=3 . \quad|V(G)|=r$ and $|E(G)|=\left\lceil\frac{r}{2}\right\rceil-$ $1=q \in \bar{G}$. Therefore $\left\langle S_{c M}(G)\right\rangle$ covers 2 edgesin \bar{G}. $\left|\left\langle n\left[u_{1}, u_{2}\right]\right\rangle\right|=2=\left\lceil\frac{r}{2}\right\rceil-1 \geq\left\lceil\frac{q}{2}\right\rceil \in \bar{G}$. Hence $S_{c M}(G)$ is $n_{\overline{c c m}}$ set.

Case (ii) $r \geq 8$, If $G=W_{r}, r \geq 8$ then Let $S_{c M}(G)$ be the connected neighborhood set in $G, S_{C M}(G)=\left\{v, u_{1}\right\}$, $|V(G)|=\operatorname{rand}|E(G)|=2(r-1) \quad$ and $\quad \operatorname{deg}(v)=$ $\Delta(G) .\{v\} \subseteq S_{c M}(G)$, therefore $S_{c M}(G)$ is a connected majority neighborhood set.
In $\bar{G},|E(\bar{G})|=\left\lceil\frac{r}{2}\right\rceil \times \operatorname{deg}\left(u_{i}\right)-\frac{\operatorname{deg}\left(u_{i}\right)}{2}$, and each vertex $\operatorname{ofdeg}\left(u_{i}\right)=r-3 \geq\left\lceil\frac{r}{2}\right\rceil$ and $\operatorname{deg}\left(u_{i}\right)=|E(\bar{G})|=\left\lceil\frac{r}{2}\right\rceil \times$ $\operatorname{deg}\left(u_{i}\right)-\frac{\operatorname{deg}\left(u_{i}\right)}{2}=\operatorname{deg}\left(u_{i}\right) \geq\left\lceil\frac{|E(\bar{G})|}{2}\right\rceil$.
Hence, $n_{\overline{C C M}}(G)=2$.

Theorem

For $G=D_{r, s}$, with $r, s \geq 1$ then $n_{\overline{C C M}}(G)=2$
Proof: Let G be a graph with $V(G)=\left\{X_{1} \cup X_{2}\right\}, X_{1}=$ $\left\{v, v_{1}, v_{2} \ldots v_{r}\right\}, X_{2}=\left\{u, u_{1}, u_{2}, u_{3}, \ldots u_{s}\right\}$. The $\Delta(G)=$ u and $\quad \delta(G)=v$. Therefore $|\langle u\rangle|=\Delta(G) \geq\left\lceil\frac{q}{2}\right\rceil \geq$ $\left[\frac{p}{2}\right]$.Hence $\quad n_{C C M}(G)=1 \in G$. But in $\bar{G},\langle u\rangle$ covers $\left\{X_{1}-v\right\} \leq \delta(G) \leq\left\lceil\frac{q}{2}\right\rceil$, therefore it is not a majority neighborhood set. Let Choose the set $S_{c M}(G)=\{u, v\}$, $|\langle u, v\rangle|=\Delta(G)+\delta(G) \geq\left\lceil\frac{q}{2}\right\rceil \geq\left\lceil\frac{p}{2}\right\rceil$. Hence $n_{\overline{C C M}}(G)$.

Theorem

If $G=P_{2} \times P_{t}$ with $t \geq 3$ then $n_{\overline{C C M}}(G)=\left\lfloor\frac{3 t-1}{4}\right\rfloor$.

Theorem

If $G=P_{3} \times P_{t}$ with $t \geq 4$ then $n_{\overline{C C M}}(G)=\left\lfloor\frac{5(t-1)}{6}\right\rfloor$

Theorem

If $G=P_{4} \times P_{t}$ with $t \geq 5$ then $n_{\overline{C C M}}(G)=\left\lfloor\frac{5(t-1)+1}{4}\right\rfloor$

Example

$$
G=P_{2} \times P_{6}
$$

$$
\bar{G}=\overline{P_{2} \times P_{6}}
$$

Theorem

For $G=K_{r, s}$ with $r \leq s, n_{\overline{C C M}}(G)=2$
Proof
Let $G=K_{r, s}$ with $\left\{X_{1} \cup X_{2}\right\}=V(G),|V(G)|=r+s$. Let $S_{c M}(G)=\left\{u_{i}\right\}, u_{i} \in X_{1}$ be the CMN-Set in G but not in \bar{G}. Since $\quad \bar{G}=K_{r} \cup K_{s} \quad$ therefore $\left|\left\langle n\left[u_{i}\right]\right\rangle\right|=\frac{r(r-1)}{2}$ and $\left|\left\langle n\left[u_{i}\right]\right\rangle\right|=\frac{s(s-1)}{2} \quad, \quad\left|\left\langle n\left[u_{i}\right]\right\rangle\right|=\frac{r(r-1)}{2}<\left|\left\langle n\left[u_{i}\right]\right\rangle\right|=$ $\frac{s(s-1)}{2}$. Hence, $S_{C M}(G)=\left\{u_{i}\right\}, u_{i} \in X_{1}$ not a CMN-set. $\operatorname{Suppose}_{C M}(G)=\left\{v_{i}\right\}, v_{i} \in X_{2}$ be the CMN-set in \bar{G} but not in G.
Therefore $S_{c M}(G)=\left\{u_{i}, v_{i}\right\}, u_{i} \in X_{1} \& v_{i} \in X_{2}$,
$\left|\left\langle S_{c M}(G)\right\rangle\right|=\frac{s(s-1)}{2}+\frac{r(r-1)}{2} \geq\left|\frac{E(\bar{G})}{2}\right|$ and $\quad\left|N\left[u_{i}, v_{i}\right]\right| \geq$ $\left\lceil\frac{V(\bar{G})}{2}\right\rceil$. Hence $n_{\overline{C C M}}(G)=2$

$$
\bar{G}=K_{3}+K_{5}
$$

$$
n_{0}(G)=2, n_{m}(G)=n_{C M}(G)=1, n_{\overline{C C M}}(G)=2
$$

Observation

In some graph G the number (i) $n_{0}(G)=n_{\overline{C C M}}(G)=2$ (ii) $n_{C M}(G) \leq n_{\overline{C C M}}(G)$

3. Conclusion

The author introduced the new parameter $n_{\overline{C C M}}(G)$ in this article. Further the we find this number for various classes of graphs and bounds.

References

[1] FrankHarary, Graph theory, Addision-Wesley reading MA(1969).

Haynes,T.WHedetniemi,S.T., and Slater,P.J, Fundementals of domination in graphs, Marcel Dekker. Inc., New York, (1998).
[3] Paulraj Jayasimman and Joseline Manora, Connected Majority Neighborhood Number of a Graph, International Journal of Research, Vol. 7, 6, 2018, PP-984-987.
[4] Sampathkumar.E and Prabha S. Neeralagi, Neighborhood number of a graph, Indian J. Pure.Appl.Math.,16(2) 126-132.Feb. 1985
[5] Joseline Manora .J and Swaminathan .V, Majority neighborhood number of a graphpublished in Scientia Magna, Dept. of Mathematics, Northwest Universtiy, Xitan, P.R China - Vol (6), N0.2, 20-25(2010).
[6] Renuka, Balaganesan, "Felicitous labelling of some path related of graphs", Indian Journal of public Health Research \& Development, Vol.9, Sep-2018.
M. Mehendran, Nithyaraj, Balaganesan, "The split Monophonic Number of a Graph", Journal of advance research in Dynamical \& control systems, Vol.11, 01, Specl.Issue-2019
[8] Venkatesan, Balaganesan, Vimala, "Fuzzy Matrix with Application in Decision Making", International Journal of pure and Applied Mathematics, Vol.116, No.23, 2017, PP.551554.

