

Complement Connected Majority Neighborhood Number

¹I. Paulraj Jayasimman, ²J. Joseline Manora

¹Academy of Maritime Education and Training Deemed to be University, kanathur, Chennai ²TBML College, Porayar, Nagai

connected Majority neighborhood.

Abstract

Article Info Volume 82 Page Number: 2189 - 2191 Publication Issue: January-February 2020

A set of vertices *S* in a graph *G* is a majority neighborhood set of *G* if the subgraph $\bigcup_{v \in S} \langle N[v] \rangle$ contains at least $\left[\frac{p}{2}\right]$ vertices and $\left[\frac{q}{2}\right]$ edges, where $\langle N[v] \rangle$ is the subgraph of *G*. In this article majority neighborhood connected complement set of *G* are introduced and this number determined $n_{\overline{CCM}}(G)$ for various graph structures.

Keywords: Connected Majority neighborhood number, Complement

Article History Article Received: 14 March 2019 Revised: 27 May 2019 Accepted: 16 October 2019 Publication: 12 January 2020

1. Introduction

In this article the author use the simple and undirected graph. The parameters $n_0(G)$, $n_c(G)$ and $n_{CM}(G)$ was studied in the following articles [1],[5],[6]-[8].

2. Majority neighborhood connected complement number of a graph

Definition 2.1

Let *G* be a graph with *m* vertices and *n* edges. A complement connected majority neighborhood set S_{CMN} such that S_{CMN} is a connected majority neighborhood set in *G* and majority neighborhood set in \overline{G} . The complement majority neighborhood number is the minimum size of connected complement majority neighborhood set of *G* and is denoted by $n_{\overline{ccm}}(G)$.

Theorem

If
$$G = C_r$$
 with $r \ge 4$ then $n_{\overline{CCM}}(G) = \left[\frac{r-3}{2}\right]$.

Proof

If $G = C_r, |V(G)| = r = |E(G)|$, the set $S_{CM}(G) = \{v_1, v_2, v_3, \dots v_{\lfloor \frac{r-3}{2} \rfloor}\}$ be the CMN- set . In $\overline{GS}_{CM}(G)$ covers $\lfloor \frac{r-3}{2} \rfloor$ vertices and $\deg(v_i) = r - 3 \in \overline{G}$ and $|E(\overline{G})| = r(r-3)$, each $|\langle u_i \rangle| = r(r-3) \ge \frac{r(r-3)}{2} \in \overline{G}$ and each $N[u_i] \ge \lfloor \frac{r-3}{2} \rfloor$. Hence $n_{\overline{CCM}}(G) = \lfloor \frac{r-3}{2} \rfloor$.

Theorem

For the path graph P_n , $n_{\overline{ccm}}(G) = \left\lfloor \frac{p-3}{2} \right\rfloor$, $p \ge 4$.

Theorem

For the $G = F_{2r+1}$ with $r \ge 1$ then $n_{\overline{ccm}}(G) = 2$

Proof: Let $G = F_{2r+1}$ with |V(G)| = 2r + 1 and E(G) = 3r in G. Let $S_{cM}(G) = \{v, u_1\}$ be the connected neighborhood setin G. Since |n(v)| = 2r + 1, $|\langle n(v) \rangle| = 3r$ and by the super hereditary property $n(G) \ge n_M(G)$. Therefore $S_{cM}(G)$ is connected majority neighborhood set. In complement of G, $|V(\bar{G})| = 2r + 1$ and $|E(\bar{G})| = r(2r-2)$. $d(v) = 0, d(u_i) = 2r - 2 \in \bar{G}$. Therefore, $|n[u_i]| = 2r - 1, u_i \in S_{cM}(G)$ and $|\langle n[u_i] \rangle| = r - 2(2r-2) \Rightarrow |n[u_i]| = 2r - 1 \ge \left|\frac{2r+1}{2}\right| = \left|\frac{p}{2}\right| \in \bar{G}$.

Therefore, $S_{cM}(G)$ is majority neighborhood set. Hence $n_{\overline{ccm}}(G) = 2$.

Theorem

If $G = K_{1,r}$ with $r \ge 2$ then $n_{\overline{ccm}}(G) = 2$.

Theorem

For the wheel graph W_r with $r \ge 3n_{\overline{ccm}}(G) = \begin{cases} 2 & for \ r = 3,4 \ r \ge 8 \\ 3 & for \ r = 5,6,7 \end{cases}$ Proof. Let $G = W_r$ with $r \ge 3$ and |V(G)| = r, |E(G)| = 2r.

Case (i):r = 5,6,7

If $G = W_5$ then $S_{cM}(G) = \{v, u_1, u_2\}, d(v) = \Delta(G)$ and $d(u_1) = d(u_2) = 3.$ $|V(G)| = r \text{ and } |E(G)| = \left|\frac{r}{2}\right| 1 = q \in \overline{G}$. Therefore $\langle S_{cM}(G) \rangle$ covers 2 edgesin \overline{G} . $|\langle n[u_1, u_2] \rangle| = 2 = \left[\frac{r}{2}\right] - 1 \ge \left[\frac{q}{2}\right] \in \overline{G}$. Hence $S_{cM}(G)$ is $n_{\overline{ccm}}$ set.

Case (ii) $r \ge 8$, If $G = W_r$, $r \ge 8$ then Let $S_{cM}(G)$ be the connected neighborhood set in G, $S_{cM}(G) = \{v, u_1\}, .$ |V(G)| = rand|E(G)| = 2(r-1) and deg(v) = $\Delta(G)$. {v} $\subseteq S_{cM}(G)$, therefore $S_{cM}(G)$ is a connected majority neighborhood set. In \bar{G} , $|E(\bar{G})| = \left[\frac{r}{2}\right] \times \deg(u_i) - \frac{\deg(u_i)}{2}$, and each vertex

ofdeg $(u_i) = r - 3 \ge \left\lfloor \frac{r}{2} \right\rfloor$ and deg $(u_i) = |E(\bar{G})| = \left\lfloor \frac{r}{2} \right\rfloor \times$ $\deg(u_i) - \frac{\deg(u_i)}{2} = \deg(u_i) \ge \left\lceil \frac{|E(\bar{G})|}{2} \right\rceil.$ Hence, $n_{\overline{CCM}}(G) = 2$.

Theorem

For $G = D_{r,s}$, with $r, s \ge 1$ then $n_{\overline{CCM}}(G) = 2$ Proof: Let G be a graph with $V(G) = \{X_1 \cup X_2\}, X_1 =$ $\{v, v_1, v_2 \dots v_r\}, X_2 = \{u, u_1, u_2, u_3, \dots u_s\}.$ The $\Delta(G) =$ $\delta(G) = v$. Therefore $|\langle u \rangle| = \Delta(G) \ge \left[\frac{q}{2}\right] \ge$ u and $\left[\frac{p}{2}\right]$. Hence $n_{CCM}(G) = 1 \in G$. But $in\bar{G}$, $\langle u \rangle$ covers $\{X_1 - v\} \le \delta(G) \le \left\lfloor \frac{q}{2} \right\rfloor$, therefore it is not a majority neighborhood set. Let Choose the set $S_{cM}(G) = \{u, v\},\$ $|\langle u, v \rangle| = \Delta(G) + \delta(G) \ge \left|\frac{q}{2}\right| \ge \left|\frac{p}{2}\right|$. Hence $n_{\overline{CCM}}(G)$.

Theorem

If
$$G = P_2 \times P_t$$
 with $t \ge 3$ then $n_{\overline{CCM}}(G) = \left\lfloor \frac{3t-1}{4} \right\rfloor$.

Theorem

If
$$G = P_3 \times P_t$$
 with $t \ge 4$ then $n_{\overline{CCM}}(G) = \left\lfloor \frac{5(t-1)}{6} \right\rfloor$

Theorem

$$\bar{G} = \overline{P_2 \times P_6}$$

Theorem

For $G = K_{r,s}$ with $r \leq s$, $n_{\overline{CCM}}(G) = 2$

Proof

Let $G = K_{r,s}$ with $\{X_1 \cup X_2\} = V(G), |V(G)| = r + s$. Let $S_{cM}(G) = \{u_i\}, u_i \in X_1$ be the CMN-Set in G but not in \overline{G} . Since $\overline{G} = K_r \cup K_s$ therefore $|\langle n[u_i] \rangle| = \frac{r(r-1)}{2}$ and $|\langle n[u_i] \rangle| = \frac{s(s-1)}{2}$, $|\langle n[u_i] \rangle| = \frac{r(r-1)}{2} < |\langle n[u_i] \rangle| = \frac{s(s-1)}{2}$ $\frac{s(s-1)}{2}$. Hence, $S_{cM}(G) = \{u_i\}, u_i \in X_1$ not a CMN-set. Suppose $S_{cM}(G) = \{v_i\}, v_i \in X_2$ be the CMN-set in \overline{G} but not in G. Therefore $S_{11}(G) = \{1, 12\} \ 11 \in X, \ 812 \in X$

Therefore
$$S_{cM}(G) = \{u_i, v_i\}, u_i \in X_1 \otimes v_i \in X_2, |\langle S_{cM}(G) \rangle| = \frac{s(s-1)}{2} + \frac{r(r-1)}{2} \ge \left|\frac{E(\overline{G})}{2}\right| \text{and} \quad |N[u_i, v_i]| \ge \left|\frac{V(\overline{G})}{2}\right|.$$
 Hence $n_{\overline{CCM}}(G) = 2$

 $\bar{G} = K_3 + K_5$

 $n_0(G) = 2, n_m(G) = n_{CM}(G) = 1, n_{\overline{CCM}}(G) = 2$

Observation

In some graph *G* the number (i) $n_0(G) = n_{\overline{CCM}}(G) = 2$ (ii) $n_{CM}(G) \le n_{\overline{CCM}}(G)$

3. Conclusion

The author introduced the new parameter $n_{\overline{CCM}}(G)$ in this article. Further the we find this number for various classes of graphs and bounds.

References

[1] FrankHarary, Graph theory, Addision-Wesley reading MA(1969).

- [2] Haynes, T. WHedetniemi, S. T., and Slater, P.J, Fundementals of domination in graphs, Marcel Dekker. Inc., New York, (1998).
- [3] Paulraj Jayasimman and Joseline Manora, Connected Majority Neighborhood Number of a Graph, International Journal of Research, Vol. 7, 6, 2018, PP-984-987.
- [4] Sampathkumar.E and Prabha S. Neeralagi, Neighborhood number of a graph, Indian J. Pure.Appl.Math.,16(2) 126-132.Feb.1985
- [5] Joseline Manora .J and Swaminathan .V, Majority neighborhood number of a graphpublished in Scientia Magna, Dept. of Mathematics, Northwest University, Xitan, P.R China – Vol (6), N0.2, 20-25(2010).
- [6] Renuka, Balaganesan, "Felicitous labelling of some path related of graphs", Indian Journal of public Health Research & Development, Vol.9, Sep-2018.
- [7] M. Mehendran, Nithyaraj, Balaganesan, "The split Monophonic Number of a Graph", Journal of advance research in Dynamical & control systems, Vol.11, 01, Specl.Issue-2019
- [8] Venkatesan, Balaganesan, Vimala, "Fuzzy Matrix with Application in Decision Making", International Journal of pure and Applied Mathematics, Vol.116, No.23, 2017, PP.551-554.