

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1950 Published by: The Mattingley Publishing Co., Inc.

Recursive and Non Recursive Algorithms to Traverse

Non Linear Data Structures

Dr. B. Madhuravani
1
, K. Sai Prasad

2
, Prof. N. Chandra Sekhar Reddy

3

1,2,3
Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad

Article Info

Volume 82

Page Number: 1950 - 1956

Publication Issue:

January-February 2020

Article History

Article Received: 14 March 2019

Revised: 27 May 2019

Accepted: 16 October 2019

Publication: 11 January 2020

Abstract

This paper portrays a study on various traversal procedures to print the components of non

linear data structures like Tree and Graph. As linear data structures can carry out the

traversal procedure with the aid of any repetitive statement which is not permitted on non

linear data structures. For this reason, we approached different techniques to perform it

using either Stack or Queue Data structures. Several methods have been suggested to visit

elements of Non linear data structures. This paper offers, various traversal techniques and

implemented on C platform.

Keywords: non linear data structures, algorithm, recursive, non-recursive.

INTRODUCTION

Storage of data in a computer system plays a

crucial role to perform operations efficiently on a

group of data. The procedure to store the data in a

system is called a Data Structures. The various

data structures are grouped into two categories. a)

Linear b) Non Linear. In Linear data structures the

elements are stored sequentially where in non

linear elements are not in sequential order.

Numerous applications are there with non linear

data structures. The non linear data structures

include Tree and Graph which are used in several

real time applications like transportation,

networking, gaming, decision making, search

engines etc..Further more, trees are used in

Operating systems, designing compilers,

processing text etc[1].. In view of this, it is very

important to store and retrieve data in non linear

data structures. The common techniques to

traverse a Tree are inorder, preorder and

postorder, whereas techniques for Graph are

Breadth First Search and Depth First Search[1, 2,

3, 4, 5, 6].The traversal sequence for the Binary

Tree depicted in Fig 1 and Graph in Fig 2 is

Fig 1: Binary Tree

A

B C

F

D E

H

G

I

J

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1951 Published by: The Mattingley Publishing Co., Inc.

The Fig 1 traversal sequence is..

Inorder : B=>H=>F=>D=>A=>E=>J=>I=>G=>C

Preorder:A=>B=>D=>F=>H=>C=>E=>G=>I=>J

Postorder:H=>F=>D=>B=>J=>I=>G=>E=>C=>

A

Fig 2. Graph

The Fig 2 traversal sequence is..

BFS : 1-2-3-4-5-6

DFS : 1-2-4-3-5-6

RECURSIVE ALGORITHMS FOR TREE

A node in a tree is defined as taking 3 parts- a)

data – stores a value b) *left – stores the address

of left child c)*right – stores the address of right

child. The traversal can be done in 3 ways which

are further taken as 6 ways.

i) inorder ii) preorder iii) postorderiv)

converse_inorder v) converse_preorder vi)

converse_postorder

INORDER TRAVERSAL:

The procedure is (Fig 3)-

Step 1: Left sub-tree traversal in Inorder

Step 2: Print Root node

Step 3: Right sub-tree traversal in Inorder

Algorithm inorder(root)

{if root is not NULL

 {callinorder for root left subtree

 print root

callinorder for rootrightsubtree}

PREORDER TRAVERSAL:

The procedure is (Fig 3)-

Step 1: Print Root node

Step 2: Left sub-tree traversal in Inorder

Step 3: Right sub-tree traversal in Inorder

Algorithm preorder(root)

{

 if root is not NULL

 {

 print root

callinorder for root left subtree

callinorder for rootrightsubtree

 }

}

POSTORDER TRAVERSAL:

The procedure is (Fig 3)-

Step 1: Left sub-tree traversal in Inorder

Step 2: Right sub-tree traversal in Inorder

Step 3: Print Root node

Algorithm postorder(root)

{

 if root is not NULL

1

2 3

4 5

6

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1952 Published by: The Mattingley Publishing Co., Inc.

 {

 callinorder for root left subtree

callinorder for rootrightsubtree

print root

 }

}

CONVERSE INORDER TRAVERSAL:

The procedure is (Fig 3)-

Step 1: Right sub-tree traversal in Inorder

Step 2: Print Root node

Step 3: Left sub-tree traversal in Inorder

Algorithm inorder(root)

{

 if root is not NULL

 {

 callinorder for rootrightsubtree

 print root

callinorder for root left subtree

 }

}

CONVERSE PREORDER TRAVERSAL:

The procedure is (Fig 3)-

Step 1: Print Root node

Step 2: Right sub-tree traversal in Inorder

Step 3: Left sub-tree traversal in Inorder

Algorithm preorder(root)

{

 if root is not NULL

 {

 print root

callinorder for rootrightsubtree

callinorder for root left subtree

 }

}

CONVERSE POSTORDER TRAVERSAL:

The procedure is (Fig 3)-

Step 1: Right sub-tree traversal in Inorder

Step 2: Left sub-tree traversal in Inorder

Step 3: Print Root node

Algorithm postorder(root)

{

 if root is not NULL

 {

 callinorder for root rightsubtree

callinorder for root left subtree

print root

 }

}

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1953 Published by: The Mattingley Publishing Co., Inc.

INORDER PREORDER POSTORDER

B – A - C

A- B - C

B – C - A

CONVERSE_INORDER CONVERSE_PREORDER CONVERSE_POSTORDER

C – A - B

 A – C - B

C – B - A

Fig 3: Recursive Traversal Techniques

NON RECURSIVE ALGORITHMS FOR

TREE

A special kind of a tree, a Binary Tree can be

traversed using Inorder, Preorder and Postorder in

non recursive manner. To traverse a tree in non

recursion, we use STACK data structure, where

the most recent element will be processed.

INORDER TRAVERSAL using NON

RECURSION

The procedure is:

Step 1: Start with Root node

Step 2: Initialize current = Root

Step 3: Push current to stack and move to its left

child.

Step 4: Repeat Step 3 until there is no left child.

Step 5: Initialize current with Stack top element

Step 6: Print current element

Step 7: Move to current right child

Step 8: Repeat steps 3-7 until Stack is empty.

Algorithminorder(struct node *cont)

{

STACK[0]=NULL;

while (cont != NULL || !isEmpty())

 {

while (cont != NULL)

 {

STACK[++top]=cont;

cont = cont->LEFT;

 }

A

C B

A

C B

A

C B

A

C B

A

C B

A

C B

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1954 Published by: The Mattingley Publishing Co., Inc.

cont=STACK[top--];

printcont;

cont = cont->RIGHT;

 }

}

POSTORDER TRAVERSAL using NON

RECURSION

The procedure involves two stacks

Step 1: Push Root node to stack1

Step 2: Initialize current with stack1 popped

element

Step 3: Push popped element to Stack2

Step 4: Until there is a left child to current push it

onto stack

Step 5: Until there is a right child to current push

it onto stack

Step 6: Repeat steps 2-5 until stack1 is empty.

Algorithmpostorder(struct node *cont)

{

s[0]=NULL;STACK1[++top]=cont;

while (!isEmpty1())

 {

cont = STACK1[top--];

STACK2[++t]=cont;

if(curr->LEFT != NULL)

STACK1[++top] = curr->LEFT;

if(curr->RIGHT!= NULL)

STACK1[++top] = curr->RIGHT;

 }

while(!isEmpty2())

 {

cont=STACK2[t--];

printcont;

 }

}

PREORDER TRAVERSAL using NON

RECURSION

The procedure is

Step 1: Initialize current to Root

Step 2: Print current

Step 3: Until there is a right child to current push

it onto stack

Step 4: Until there is a left child to current push it

onto stack

Step 5: Store popped element in current

Step 6: Repeat steps 2-5 until current is NULL

Algorithmpreorder(struct node *cont)

{

STACK[0]=NULL;

while (cont != NULL)

 {

printcont;

if(cont->RIGHT!= NULL)

STACK[++top] = curr->RIGHT;

if(curr->LEFT != NULL)

STACK[++top] = curr->LEFT;

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1955 Published by: The Mattingley Publishing Co., Inc.

curr = STACK[top--];

 }

}

The analysis about Recursive and Non recursive

Tree traversal technique is given in Table 1:

S.No
Recursive

Traversal

Non Recursive

Traversal

1 Easy to

implement

Complex to

implement

2 Takes less

SLOC

Results in more

SLOC

3 Takes less

space

Takes more

space

4 Time

complexity:

O(n)

Time

complexity:

O(nlogn)

Table 1: Recursive vs Non Recursive Traversals

 GRAPH TRAVERSAL TECHNIQUES

A non linear data structure, Graph can be

traversed in two ways: a) BFS- Breadth First

Search and b) DFS – Depth First search

BFS- BREADTH FIRST SEARCH

The BFS implementation make use of QUEUE

data structure. The algorithm is given below:

AlgorithmBFS(int v)

{

 insert_queue(v);

 while(!isEmpty_queue())

 {

 v = delete_queue();

 print v;

 VISIT[v] = 1;

 for(x=1; x<=n; x++)

 {

if(GRAPH[v][x] == 1

&&VISIT[x] == 0)

 {

 insert_queue(x);

 VISIT[x]=1;

 }

 }

 }

 }

 DFS- DEPTH FIRST SEARCH

The DFS implementation make use of STACK

data structure. The algorithm is given below:

AlgorithmDFS(int v)

{

intx,flag=0;

 push(v);

 VISIT[v] = 1;

 printf("%d ",v);

 while(!isEmpty_stack())

 {

 flag=0;

 y=STACK[top];

 for(x=1; x<=n; x++)

 {

if(a[y][x] == 1

&&VISIT[x] == 0)

 {

 push(x);

 printx;

 VISIT[x]=1;

 flag=1;

 break;

 }

 }

 if(flag==0) top--;

 }

}

January - February 2020
ISSN: 0193 - 4120 Page No. 1950 - 1956

1956 Published by: The Mattingley Publishing Co., Inc.

5. CONCLUSION

This paper, explains various techniques and

implementations to visit and print the elements of

non linear data structures. The implementations

for non recursive algorithms make use of either

STACK or QUEUE data structure. This paper

presented the procedure in a simpler fashion with

less SLOC. In future, we implement all the

techniques without taking either STACK or

QUEUE.

References:

[1] Vinu V Das, “A new Non-Recursive

Algorithm for Reconstructing a Binary

Tree from its Traversals”, IEEE Comm.,

pp. 261-263, 2010

[2] Vinu V Das, “Principles of Data Structures

Using C and C++”, New Age International

Publishers, Reading, Mass., 2005.

[3] M. Weiss, Data Structures & Problem

Solving Using Java, 2"d ed., Addison

Wesley, 2002

[4] D. E. Knuth, The Art of Computer

Programming, Vol. 3 (2nd ed.): Sorting

and Searching, Addison Wesley, 1998.

[5] J. Driscoll, and Y. Lien, A Selective

Traversal Algorithm for Binary Search

Trees, Communications of the ACM,

Number 6, Vol. 21, 1978, pp. 445-447.

[6] R. Sedgewick, Algorithms in Java, 3d

edition, Addison Wesley, 2003

[7] J. Driscoll, and Y. Lien, A Selective

TraversalAlgorithm for Binary Search

Trees, Communicationsof the ACM,

Number 6, Vol. 21, 1978, pp. 445-447.

[8] Data Structures Using C, ReemaThareja,

Second Edition 2011.

[9] N. Chandra Sekhar Reddy, Dr. Purna

Chandra Rao, Dr G Govardhan, An

Intrusion Detection System for Secure

Distributed Local Action Detection and

Retransmission of Packets, International

Journal of Soft Computing, 12(1), 45-49,

2017.

[10] Shirisha N, Sowmya G, DivyaJyothi G,

Navya K, Design and implementation of an

android application for management of

events, International Journal of

Engineering and Technology(UAE) 2018.

