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Abstract: This paper proposes new strategy in developing a direct two-step
implicit hybrid block method with generalized two off-step points for
initial value problems (I\VVPs) of third order ordinary differential equations
(ODEs). In this strategy, two off-step points are confined in the second
step of two-step interval. The main continuous schemes are obtained
through interpolating approximate solutions in the form of power series at
three the grid points while its second derivatives are collocated at all the
grid points in the interval. The analysis of the method such as order, zero
stability, consistency and convergence are also discussed. It was found that
the proposed method outperforms the existing methods. Hence, it can be
considered as a viable alternative method to solve the third order of 1VPs

Publication: 25 November 2019 directly.

I. INTRODUCTION

The third order of IVVPs in form

y(@) =gy y(a)=

x € [a,b]. (1)

y' =fyy. v,
01, Y@ =g,

can be solved by using direct methods such as
predictor-corrector methods [1], block methods[2]
— [9]and hybrid block methods[10]. However,
most of existing hybrid block methods were
derived using specific off-step points for solving
(1) directly. In order to overcome these issues,
multi-step hybrid block methods were introduced.
These methods are not only capable of computing
numerical solution at many points simultaneously,
but they manage to overcome zero stability (see
[11, 12]). Recently, Mansor et al.[13] proposed
two-step hybrid block method with generalized

Published by: The Mattingley Publishing Co., Inc.

one off-step point to find the direct solution of the
second order IVPs. As expected, this method
produces better accuracy than the previous
methods. However, it only considers one off-step
point between two-step intervals.

This paper intends to extend their work for
solving third order IVVPs by considering two off-
step points in the second step of two-step interval.

Il. DEVELOPMENT OF THE METHOD

In this section, a two-step implicit hybrid block
method with generalized two off-step points based
on new strategy for solving (1) is described.

Firstly, define a two-step interval, x € (x,, X, 42]
which consists of the initial step point, x, the
interior step point, x,,; and the last step point,
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Xp4o2 With two off-step points, x,,.and x, .,
where 1 <s<r<2.

In deriving a direct two-step implicit hybrid block
method using the new strategy (refer to Figure 1),
we consider two off-step points i. ex, ., and
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Xn+- Which are located in the second step of a
two-step interval. As a result, the total number of
points used in deriving the proposed method is
five (5).

| —

Xn Xn+1

| -

Xn+s Xn+r Xn+2

Fig 1: Two-step interval with two off-step points

Now, let the approximate solution of (1) be the
power series polynomial of the following form

i+c—1

ye = Y o () (2)

j=0

where x € (x,,, x,42] forn=0,24,...,N—2,iis
the number of interpolation points which is equal
to the order of differential equation, ¢ is the
number of collocation points in the interval i.e
Xntj, G=01,s72)and h=2x,41 —x, Is a
constant step size for the partition of interval

[a,b] defined by a = xy < x; <x4 < <x, <
Xn 42 < e < XN—2 = b.
Differentiating (2) three time gives
0= DG = 2) x = xyi
y @ =) g @)
j=3
Now, interpolating (2) at x,,;, (j =0,1,s) and

collocating (3) at all points in that interval
produces eight equations which can be written in
the following matrix form:

Published by: The Mattingley Publishing Co., Inc.

1 0 0 O 0 0 0 0 Qo

11 1 1 1 1 1 1 a;

1 s s?2 s% s+ §° s® s7 a
1100 0 6 0 0 0 0 ||as]
RBlf0O 0 0 6 24 60 120 210 a, |~

0 0 0 6 24s 60s* 120s® 210s* as

0 0 0 6 24r 60r* 120r® 2101 Qe

0 0 0 6 48 240 960 3360 as

(4)

The values of ¢;'s, (j = 0,1, ..., 7) can be obtained
by using Gaussian elimination and then
substituted back into (2) to give a continuous
implicit scheme of the form

2
YO = D @Yy + ) [ Ofuy
j=0,1,5 j=0 (5)

£ B @y

j=sr

Now, differentiating (5) twice yields
yO@ = Wy

j=0,1,s

+ Z Bj(i)(x)fnﬂ" L 6)

j=0,1,2,s,r

= (DHM@).

Evaluating (5) at non-interpolating points,
1. X4 and x5, and (6) at all points i.e, x,.;,
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(j = 0,1,s,r,2)produces a discrete scheme and its
derivatives at x, represented by the matrix form

below

A2[2]3 Yrr21[2]3

— Blz[z]BRlz[z]B + B22[2]3R§[2]3 +
35[2]3R?2)[2]3 +h3 [D2[2]3Ri[2]3 + E2[2]3R§[2]3](7)

where
r(s—r r—1r
( ) ( ) 1 o
1-s (1-s)s
2(s—2 2
( ) 0 1
420213 — 1-s 1-s)s p2l2ls
s 1 0 0o '
h(1—s) hs?2—hs
2 2 0
h2(s—1) h%2(1—-s)s
r—1)r-—-s
/0 0 0 ( )( )\
s
| 2 |
0 0 0 -—1
=| S [,
0 0 0 _1+S
hs
0 0 0 2
h?s
0 0 0 O
22 _ [0 O O O [2]5
BE=lo 00 —1)5
0 0 0 O
0 0 0 O
_[(0 0 0 0] pop
o0 0 o0/
0 0 0 -1
0 0 0 Dy
[0 0 0 Dy
={o 0 o Dy )
0 0 0 Dy
Eyy Eip Eiz3 Ey
gl = [ Bzt Bz Eay By y2i2l
E31 Ezp Ezz Ezq '™
Ey Eyp Esz Ey
Yn+1 Yn-3 y:‘ﬂ—3
Vn+s 20213 _ [ Yn—2 20203 _ Vo2
Yn+4r 'Rl - Yn-1 ’Rz y,n—l '
Vn+2 Yn y’n
y::n_3 fn—3 fn+1
R Y n-2  RAZ fa—2 ,R22 — fo+s
y n-1 fn—l fn+r
y”n fn fn+2
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The elements of matrix D213 and matrix E2[2ls

are given in Appendix A.

Multiplying (7) by the inverse of A2[2ls, we have

12[2]3Y2[2]3 — E2[2]3R2[2]3 + EZ[Z]3R2[Z]3

32[2]3R2[2]3 +h3[D2 3R 2[2]3 +E2 2]3R 3](8)

where
1 0 0 O 0 0 0 1
s _[001 0 0) e (0 0 0 1
0 01 01 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 h
[0 0 0 hs
0 0 0 hr/
0 0 0 2h
2
000 ¥
2
h22
B2lls _ 0 0 O 25 D202l —
’ 00 0 X
2
0 0 0 2hr?
0 00 1214 /1211 €12 €13 €14
00 0 Doy popy En Eyn Ep By
0 0 0 Ds B3y Ez Ezz B
0 0 0 Dy Ey Espp Eyz Ey

The elements of D223 and E2[2ls are shown in

Appendix B.

Equation (8) can also be written as

, 1 "
Yar1 = Ya + hy, +ShTy

3 _
+ h [1680”(11 35s

+ 7r (=5 + 27s))fn +
1
1680(r2 —3r+3)r(r —s) (s2 —3s+ 3)s 2(r
—5)(s —2)s(10 — 21s + 7r(8s
=3Dfitn +

—2)r(r

(s—Ds(—(r—Dr@r—s)B—-7r—7s+21rs)fo4,

—2(s=2) (=11 + 355)f,4, +

2(r—=2)(r — Dr(—11 + 35 f,44],

(9)
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A T 3
Ynts = Yo Fhsy  + Shisty 4 B [o
+5(s—9)— 3s(14+s(s—
2
D~ 16806 =D = Drr = )G =2 =1
—2)r (r —s)(=2 + 5)s>(7r(—=6 + s)
+ (14—

(7r (30

35)S) fign + (s = D)s>((r — Dr(r —s)(7r (s — 3) + (7
= 35)8)f24n — 6(s — 2)(14 +
(s = 7)) fugr) +2(r = 2)(r — Drs3(s((21 — 4s)s —
28)+7r(10+(s—6)s))fn+s, (10)

3

T O L % NN CTRLAe
Yntr =Y thry  +oh7rfy  + [m(( +r(r

3r
-9)) - 7—5(14 +r (=D —

2r3
16800 =D = DG —DG—DsG=r) "~
—5)(s—2)s(3r?+42s—7r (2
+ ) fien +
(r=Dr2(r =s)(s = Ds(rBr—7) = 7(r = 3)s) foun
+2(s — 2)(s — 1)s(r(~28 +

2)ri(r

21 —-4r)r)+ 710+ (r —6)1)S) fryr — 6(r — 2)(r —
Dr2(14+(r—7)r)fn+s, (11)

"

Ynvz = Y+ 2Ry, + 2Ry 4 B [ (4
—14s+7r(—2 + 9s))f,, —
1
((4rs(r

105(r —=2)(r— Dr(s— 2)(s — 1)s(s — 1)
—2)r—-s)(s—2)(12—-14s
+7r(3s —

2D fa+1 —s(s = D((r = Dr(r = $)(7rs — D fos2
—4(s =2)(7s = 2)fp1r) + 4(r -

2)(r = Dr(7r = 2)futs)- (12)

Substituting (9) and (10) into the first and second
derivatives of the discrete schemes produces first,

and second derivatives of the block as follows

’

yn+1=y,n+hy”n

1
+ hz m(g —8s+ T(—S + 355))ﬁ1

(=3+8r)
* 60(r —s)s(2 — 3s + s2)

fots +
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(4=7s+r(=7+155)) (3-8s)

60(—1+7)(—1+s) farr + 607 (2—37+12)(r—s) fosr +

(=1+7(2-55)+25)
120 (—=2+7)(=2+s) f””]’ (13)

’

yn+s= y,n+ hsy”n
S

2|
+h[ 1207
—2@B +r)st+s3)f +

2

(—40r+5(2 +3r)s

s2(—=(s — 2)s(2s — 5) + (20 + 3(s — 5)s))
60(r —s)(—=2+s)(—=1 +5s) s
s*(=2r(=5+5s) + (-4 + 5)s)
60(—1+7)(—=1+5) n+l
h?s*(10 — 65 + s2)
C60r(2 —3r+1r))(r—ys) fosr =

54(5r—2(1+r)s+sz)
S Cair ey iz (14)

’

yn+r
= y’n + hry”n

,[ r*(r? —40s —2r*(3 +5) + 5r(2 + 35))
th [_ 120s "

(10 — 67 + 1%)
60(r —s)s(2 —3s +s?)

foes +

r4(r?+10s-2r(2+s))
60(—1+7)(—1+s) fs1 +
r2(2r3-205—3r2(3+s)+57(2+3s))
60(2—3r+712)(r—s)

f _r4(r2+53—2r(1+s))f ]
nET 10 (—24r) (—2+s) M2

(15)

'

yn+2 =y,n+ 2hy”n
2
h? |[—— (= s+ r (=1 + 55))f,

157rs
+ 4r N
15 —s)s (2 —3s +s2) Juts
4(4—4s+r(—4+55)) 4s
15(=1+47)(—1+s) fasr + 15(2r—3r2+r3)(—r+s)ﬁl+r -
2(—=2+r+8)15(=2+4+7r)(-2+s)/n+2,
(16)
" " (7 — 15s + 57(10s — 3))
Yo =YV ath 120rs n
(=7 +157)
Jfa+s

+ 60(r —s)s(2 — 3s +s?)
(18 — 255 + 57r(8s — 5))
60(—1+71)(-1+s) ‘"
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(7—-15s) (—3+r(5-105)+5s) ]
60r(2—3r+r2)(r—s)fn+r 120 (=2+7)(=2+s) frsz)
7)
y n+s
=y n
s(57(12 + (s — 6)s) + s(—20 — 3(=5 + 5)s))
h 120r Jo

s (157(s — 2)? + s(45s — 1252 — 40))
60(r —s)(2 —3s +s?)

fn+s +

33(20r—5(2+r)s+3$2) _

60(—1+7)(~1+s) fr1

s3(2043(=5+5)s) s3(5r(=2+s)+(5-35)s)
60(—2+r)(—1+r)r(r—s)fn+r+ 120 (=2+7)(=2+s) f"”]' (18)

Y on+r
"

n

rr(20+3(=5+7r)r) — 512+ (—6+1)r)s)
B 120s Jn

r3(20+ 3(=5+1)r)
60(r —s)(=2 + s)(—1 +s)s’"**

73312420557 (2+s))
60(=1+r)(=1+s) o +

r(r (40437 (—15+41))—15(—247)%s) r3((5=3r)r+5(=24r)s) ]

60(=2+7)(=1+7)(r—s) Jusr 120 (—2+7)(—2+s) fa+a ]
(19)

n " 1 2
Y ne2 =Y n+h' [E (S_E)fn‘i‘

415(r—s)s(2—3s+s2)fn+s+ 415(5+

1
(=141r) (= ]4+s))fn+1 +

(20)

2
o s G~ T o)

2.1 Order of the Method

The linear difference operator L associated with
(8) is defined as

Lly(x); h] = 122y, 2k
B [2]3R
+ B 3R§[2

B 2[2]
+h3 | D?2h Ry
+ F2021s g2 ] 21)

where y(x)is an arbitrary test function
continuously differentiable on[a, b]. Expanding

202y | p2i2la p2izla

Published by: The Mattingley Publishing Co., Inc.
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22lsand RZ2 in Taylors series and collecting
the terms in powers of h gives
Lly();hl

= y(x) + Cihy (x) + Ch%y" (x)
(22)

+

Definition 2.1 Hybrid block method (8) and
associated linear operator in (21) is said to be of

order d = [dy,dy, ds,d,]7 if C2H =
C2ls — .. = ¢2%s — 0 and €225 %0 with
error vector constants 2‘55_22]3, (Refer [14]).

512[2]3 —

By using Taylor series expansion about x,,
for (21), it is found that the order of method
is[5,5,5,5].

The new two-step hybrid block method (8) is said
to be consistent if its order greater than or equal
one (1). So, the new method is consistent since its
order is greater than 1.

2.2 Zero Stability

The new two-step hybrid block method in (8) and
it derivatives is said to be zero-stable if no root of
the first characteristic polynomial 7n(w) =
wlyxs — E12[2]3
one and every root of modulus one is simple,
where Iy, is identity matrix and ]§12[2]3 is the

coefficients matrix of y, function. So, if the
determinant m(w) = 0, then

is having a modulus greater than

0
1
0

= o oo
|
cooo
co oo
co oo
[ S SR
Il
(=)

1 0
0 1
0 0
0 0
=wl(w—-1)=0

which implies w = 0,0,0,1. Hence, the newly
developed method is zero stable.

2.3 Consistency and Convergence
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Theorem 2.1Consistency and zero stability are
sufficient conditions for a linear multistep method
to be convergent, (see [15]).

Based on the above theorem, the method in (8) is
consistent and zero stable and thus is convergent.

3. Implementation

This section briefly describes the implementation
of the new method to find the approximation
solution of third order IVPs. First of all, the
Taylor Series are employed once for developed
methods to produce predicted initial values for
Yot =1,2,s,rwherel <s <r < 2. The
computation is done in a block. In the first block,
the obtained values are substituted in the
developed methods to get the corrected values of
Yasi, i = 1,2, s, 7. For the second block, the value
at x, 4, is used as the intial value and substituted
in the proposed methods to yield the approximate
solution. This process is repeated untilit reaches
the end of the integrated interval.

4. Numerical Experiments

To determine the accuracy and stability of our
methods, the following third order ODEs

November-December 2019
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problems are tested for 0 < x < 10. However, the
choosing x will be depending on the existing
solution and existing method to compare results in
terms of error of new block methods.

The following definitions are used in the
following tables.

HBM2Sew2p: Two-step implicit hybrid block
method with generalized two off-step points based
on new strategy

Olabode M1: Block method proposed by
Olabode.

Olabode M2: Predictor-corrector method
proposed by Olabode.

AE: Absolute error.

OSP: Off-step points used in

G2SHBewzp, s = %,r = % for problem 1, 2,3 and

4.
d: Order of the method.

4.1 Tested Problems

Probleml: y"—x+4y =0, y(0)=y'(0) =
0,y'(0) = 1for o < x < 1with h = —.
3 (1+cos 2x)

Exact solution: y(x) = ”

Source: [16, 17]

Table 2: Comparison of errors obtained by new method with [16, 17] for Problem 1

AE in AE in AE in Ayowemi
X HBM2Sew2p | Adesanya(2011) et. al., (2014)

OSP d=17 d =7
0.1 | 1.292391e-10 1.189944e-11 1.1899e-11
0.2 | 7.581347e-10 3.042207e-09 3.0422e-09
0.3 | 1.953290e-09 7.779556e-08 7.7796e-08
0.4 | 3.942136e-09 7.746692e-07 1.5559e-07
0.5 | 6.705333e-09 4.599010e-06 3.0541e-07
0.6 | 1.030812e-08 6.478349e-06 4.6102e-07
0.7 | 1.462561e-08 5.783963e-06 3.1380e-07
0.8 | 1.953372e-08 2.354715e-06 7.0374e-07
0.9 | 2.481137e-08 3.766592e-06 1.0177e-06
1.0 | 3.016123e-08 1.233120e-05 1.6528e-06

Published by: The Mattingley Publishing Co., Inc.
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Problem2:  y" —e* =0, y(0) =3,y'(0) =1,y"(0) =5 for 0 < x < 1 with h = .
Exact solution: y(x) = 2x% + e* + 2.

Source: [18, 19]

Table 2: Comparison of errors obtained by new method with [18, 19] for Problem 2

AE in AE in Kuboye | AE in Olabode and
x HBM2Spew2r | and Omar (2015) Yusuph (2009)

OSP d=6 d =5
0.1 | 3.023359¢-12 3.369305e-12 7.56479e-11
0.2 | 1.789324e-11 2.160050e-11 1.83983e-9
0.3 | 4.703704e-11 5.333245e-11 4.42400e-9
0.4 | 1.002545e-10 9.988632e-11 1.03587e-8
0.5 | 1.805089e-10 1.598988e-10 1.12999¢-8
0.6 | 2.997727e-10 2.511404e-10 1.46095e-8
0.7 | 4.616627e-10 3.961489¢-10 2.05295¢e-8
0.8 | 6.808030e-10 5.926823e-10 1.95075e-8
0.9 | 9.616121e-10 8.429168e-10 1.08431e-8
1.0 | 1.321949e-09 1.144603e-09 1.54095e-7

Problem 3: y" —3sinx=0, y(0) =1,y (0) =0,y (0) = —2for 0 < x < 1with h = %

; 2
Exact solution:y(x) = "7 + 3cosx.

Source: [20]

Table 3: Comparison of errors obtained by new method with [20] for Problem 3

AE in AE in AE in
X HBM2Sew2p OlabodeM1 OlabodeM?2
OSP (2013) (2013)
d=8 d=8
0.1 | 8.213319e-12 1.65922e-10 4.172279744e09
0.2 | 4.857537e-11 4.76275e-10 9.578546178e-08
0.3 | 1.256936e-10 6.23182e-10 3.991586710e-07
0.4 | 2.599922e-10 19.9134e-10 1.036864440e-06
0.5 | 4.556018e-10 3.28882¢-10 2.128509889¢e-06
0.6 | 7.312086e-10 1.27096e-09 3.789539851e-06
0.7 | 1.090302e-09 4.84653e-09 6.130086676e-06
0.8 | 1.549085e-09 1.09585¢-08 9.253867047e-06
0.9 | 2.110265e-09 2.01880e-08 1.325714643e-05
1.0 | 2.786920e-09 3.53956e-08 1.822777782e-05
Problem 4' Y =y @y +y) =0, y(0) =1,y(0) =3,y (0 =0foro<x<1
with h = o

Published by: The Mattingley Publishing Co., Inc.
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Exact solution:y(x) = 1+3In |

Source: [21, 16]

24x

2—x
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Table 4: Comparison of errors obtained by new method with [21, 16] for Problem 4

AE in AE in Ogunware | AE in Adesanya
X HBM2Snewzp etal., (2018) (2011)
OSP d=6 d=5
0.21 | 1.110223e-15 7.178702e-13 8.037948 e-11
0.31 | 4.218847e-15 2.444489e-12 6.043090 e-10
0.41 | 1.110223e-14 6.052270e-12 2.581908e-09
0.51 | 2.309264e-14 1.270273e-11 8.158301e-09
0.61 | 4.130030e-14 2.417755e-11 2.141286e-08
0.71 | 6.861178e-14 4.339396e-11 4.969641e-08
0.81 | 1.079137e-13 7.532197e-11 1.620387e-07

5. Discussion and Conclusions

A new two-step hybrid block method with new strategy to solve the third order ordinary differential
equations directly has been successfully developed. The new method possesses good properties of numerical
method and has an order of five. The performance of the new method has proven to be compatible and better
than the existing methods when solving the same problems.
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Appendix A
D14

_ (r=1DBr>+1r?(24—1545) +8r3(3 + 7s) — r*(18 + 7s) + s(11 — 245 — 24s% + 185% — 35*) + r(154s% — 11 — 565° + 7s*))

1680s

Dyy =

Ey

Eqpp

(s —2)(24s — 1253 — 5 + 35* — 7r(—3 + 10s — 652 + s3)) Do = (11 — 24s — 24s% + 1853 — 35* + 7r(22s — 852 — 5 + 53))

840rs 134 1680hr

(11 — 245 — 245% — 2453 + 185* — 35% + 7r (=5 + 225 + 225% — 8s° + 5%))
840h%rs ’

Dyy = —

_r(3r® = r*(11 4 75) + r%(=11 4 355) + r3(=11 + 355) + 5(=10 + 115 + 11s* + 115 — 35*) + r(10 — 3552 — 355° + 7s%))

840(—1 + )

_(r=Dr(=11+3r*+3r3(=6 +5) — 115 — 115> + 17s% — 4s5* + 3r?(8 — 65 + 5) + 3r(8 + 85 — 65 +5%))

840s(2 — 3s + s2)
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(11 + 4r* — 24s — 2452 + 1853 — 35* —r3(17 + 35) + r2(11 + 18s — 352) + r(11 — 24s + 18s? —353))

Bz = 840(=2 + 1)
£ = (r—Dr@Br5 +2r2(7s = 2) + 2r3(7s —=2) —r*(4 + 7s) + s(=3 + 45 + 45> + 453 — 35%) + r(3 — 14s% — 1453 + 7s4))
1= 1680(—2 + 1) (=2 +5)
_ (s —2)(53s +215* + 55° — 86 — 35* + 7r(13 — 11s — 35% + 5*)) T, = (3s+ 752 +9s3 —5—4s* + 7r(3 — s — 352 + 5%))
21 = 420(=1+7)(=1+5) 2z 420(=1+ s)s(=r +5) ’
B = (10 — 535 + 2452 + 2453 — 18s* + 35%) £ = (=19 — 4s + 253 + 35* — 7r(=1 — 25 + 53))
B 420r(2 = 3r +r2)(r —s) e 840(=2 + 1) '
Fai = 5(10-11s—11s2—1153+35%—7r (355552 +53)) E. = (114+115+115%2 1753 +45*—7r (54+55—552+53))
3 840h(=1+7)(~1+s) 13z T 840h(—2+5)(~1+s)(—r+s) '
o = s(=11+ 24s + 2452 — 18s3 + 3s5%) Bu = s(=3+4s+4s? +4s3 =35 + 7r(1 — 25 — 252 + 5%))
3= 840hr(2 —3r+r2)(r—s) >t 1680h(—2 +1)(=2 + 5) ’
5 _ (=10 + 115+ 1152 + 1153 + 11s* — 35° + 7r(3 — 55 — 55% — 553 +s4))
= 420R2(=1+1)(=1+5)
(114 115+ 1152 + 11s® — 175* + 45° — 7r(5 + 55 + 557 — 55° + 5)) £ = (=11 + 24s + 2452 + 2453 — 185* + 355)
7= 420h%(r — 5)s(2 — 3s + s2) e 420h?r(2 = 3r+r?)(r —s) ’

(=3 + 4s + 45% + 45 + 45* — 355 + 7r(1 — 25 — 25% — 25° +s4))
840h2(—=2+71)(—2+5)

Eqy =—
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—13+48r
5040 (r—s)s(2—3s+s2)’

_ r*(3r3—-84s5—612(3+s5)+147r(2+35))

5040 (2—3r+r2)(r—s) '

__ 16(3—4s+r(—4+75))

315(=1+7r)(=1+s) '

= s*(s(=56—3(—8+s)s)+4r(84+s(—21+25))) = __ (13—48s+4r(—12+77s))
Dy = 100807 ' Daa = 100807s
= r4(=3r343365+8r2(345)—287r(243s)) = 8(1—3s+r(—3+145s))
D3y = Dy = :
10080s 315rs
B _ s*(s(—28+185—3s2)+6r(14—7s+s2)) = _ s®(=8r(=7+s)+s(—16+3s))
1= 5040 (r—s)(2—3s+s2) PH1Z T 5040 (—147) (= 14s)
B = s0(56—245+3s?) = s%((8-39)s+4r(=7425)) =
B 7 5040r(2-3r+r2)(r—s)’ 1% T 10080 (=2+r)(—2+s) 21 T
= 9-22s4r(—22+470s) 5 _ 13—48s = _ —3+4r(8—28s5)+8s
E22_ _ _ » =23 — _ 2N 1E24-_ _ _ )
5040 (—1+r)(—1+s) 50407 (2—=3r+r4)(r—s) 10080 (—2+47r)(—2+s)
B = r®(56—24r43r2) = r°B3r2+565-8r(2+s)) &
31 ™ 5040 (r—s)s(2—3s+s2)” 32 T 5040(—1+r)(—-14s) ' 33
B _ r%(—3r2-28s+8r(1+s)) & 16(—1+3r) =
34 7 710080 (—241)(=2+s) 4 T 315(r—s)(=2+s)(=14s)s’ A2 T
= 16(—1+3s) = _ r(4—14s)+4s
Ey3 = — o Eu =
315r(2—-3r+r=)(r—s) 315(=2+r)(—2+s)
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